Suppr超能文献

微载体辅助的卤化铅钙钛矿纳米晶体无机脱壳

Microcarrier-Assisted Inorganic Shelling of Lead Halide Perovskite Nanocrystals.

作者信息

Dirin Dmitry N, Benin Bogdan M, Yakunin Sergii, Krumeich Frank, Raino Gabriele, Frison Ruggero, Kovalenko Maksym V

机构信息

Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences , ETH Zürich , CH-8093 Zürich , Switzerland.

Laboratory for Thin Films and Photovoltaics , Empa - Swiss Federal Laboratories for Materials Science and Technology , CH-8600 Dübendorf , Switzerland.

出版信息

ACS Nano. 2019 Oct 22;13(10):11642-11652. doi: 10.1021/acsnano.9b05481. Epub 2019 Oct 10.

Abstract

The conventional strategy of synthetic colloidal chemistry for bright and stable quantum dots has been the production of epitaxially matched core/shell heterostructures to mitigate the presence of deep trap states. This mindset has been shown to be incompatible with lead halide perovskite nanocrystals (LHP NCs) due to their dynamic surface and low melting point. Nevertheless, enhancements to their chemical stability are still in great demand for the deployment of LHP NCs in light-emitting devices. Rather than contend with their attributes, we propose a method in which we can utilize their dynamic, ionic lattice and uniquely defect-tolerant band structure to prepare non-epitaxial salt-shelled heterostructures that are able to stabilize these materials against their environment, while maintaining their excellent optical properties and increasing scattering to improve out-coupling efficiency. To do so, anchored LHP NCs are first synthesized through the heterogeneous nucleation of LHPs onto the surface of microcrystalline carriers, such as alkali halides. This first step stabilizes the LHP NCs against further merging, and this allows them to be coated with an additional inorganic shell through the surface-mediated reaction of amphiphilic Na and Br precursors in apolar media. These inorganically shelled NC@carrier composites offer significantly improved chemical stability toward polar organic solvents, such as γ-butyrolactone, acetonitrile, -methylpyrrolidone, and trimethylamine, demonstrate high thermal stability with photoluminescence intensity reversibly dropping by no more than 40% at temperatures up to 120 °C, and improve compatibility with various UV-curable resins. This mindset for LHP NCs creates opportunities for their successful integration into next-generation light-emitting devices.

摘要

合成具有明亮且稳定量子点的传统胶体化学策略一直是制备外延匹配的核/壳异质结构,以减轻深陷阱态的存在。由于其动态表面和低熔点,这种思路已被证明与卤化铅钙钛矿纳米晶体(LHP NCs)不兼容。然而,对于将LHP NCs应用于发光器件而言,提高其化学稳定性的需求仍然很大。我们没有应对它们的特性,而是提出了一种方法,即利用其动态离子晶格和独特的缺陷容忍能带结构来制备非外延盐壳异质结构,这种结构能够使这些材料在环境中保持稳定,同时保持其优异的光学性能并增加散射以提高外耦合效率。为此,首先通过LHP在微晶载体(如碱金属卤化物)表面的异质成核来合成锚定的LHP NCs。第一步使LHP NCs稳定,防止其进一步合并,这使得它们能够通过两亲性Na和Br前体在非极性介质中的表面介导反应包覆一层额外的无机壳。这些无机壳包覆的NC@载体复合材料对极性有机溶剂(如γ-丁内酯、乙腈、N-甲基吡咯烷酮和三甲胺)具有显著提高的化学稳定性,在高达120℃的温度下热稳定性高,光致发光强度可逆下降不超过40%,并改善了与各种紫外光固化树脂的相容性。这种针对LHP NCs的思路为它们成功集成到下一代发光器件中创造了机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d7/6812064/950539186cd9/nn9b05481_0007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验