Suppr超能文献

开发并多队列验证预测 2 型糖尿病的临床评分。

Development and multi-cohort validation of a clinical score for predicting type 2 diabetes mellitus.

机构信息

Department of Medicine, Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland.

MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, England, United Kingdom.

出版信息

PLoS One. 2019 Oct 9;14(10):e0218933. doi: 10.1371/journal.pone.0218933. eCollection 2019.

Abstract

BACKGROUND AND AIMS

Many countries lack resources to identify patients at risk of developing Type 2 diabetes mellitus (diabetes). We aimed to develop and validate a diabetes risk score based on easily accessible clinical data.

METHODS

Prospective study including 5277 participants (55.0% women, 51.8±10.5 years) free of diabetes at baseline. Comparison with two other published diabetes risk scores (Balkau and Kahn clinical, respectively 5 and 8 variables) and validation on three cohorts (Europe, Iran and Mexico) was performed.

RESULTS

After a mean follow-up of 10.9 years, 405 participants (7.7%) developed diabetes. Our score was based on age, gender, waist circumference, diabetes family history, hypertension and physical activity. The area under the curve (AUC) was 0.772 for our score, vs. 0.748 (p<0.001) and 0.774 (p = 0.668) for the other two. Using a 13-point threshold, sensitivity, specificity, positive and negative predictive values (95% CI) of our score were 60.5 (55.5-65.3), 77.1 (75.8-78.2), 18.0 (16.0-20.1) and 95.9 (95.2-96.5) percent, respectively. Our score performed equally well or better than the other two in the Iranian [AUC 0.542 vs. 0.564 (p = 0.476) and 0.513 (p = 0.300)] and Mexican [AUC 0.791 vs. 0.672 (p<0.001) and 0.778 (p = 0.575)] cohorts. In the European cohort, it performed similarly to the Balkau score but worse than the Kahn clinical [AUC 0.788 vs. 0.793 (p = 0.091) and 0.816 (p<0.001)]. Diagnostic capacity of our score was better than the Balkau score and comparable to the Kahn clinical one.

CONCLUSION

Our clinically-based score shows encouraging results compared to other scores and can be used in populations with differing diabetes prevalence.

摘要

背景与目的

许多国家缺乏资源来识别有患 2 型糖尿病(糖尿病)风险的患者。我们旨在基于易于获得的临床数据开发和验证一种糖尿病风险评分。

方法

本前瞻性研究纳入了 5277 名参与者(55.0%为女性,51.8±10.5 岁),他们在基线时无糖尿病。与另外两个已发表的糖尿病风险评分(Balkau 和 Kahn 临床评分,分别为 5 个和 8 个变量)进行了比较,并在三个队列(欧洲、伊朗和墨西哥)进行了验证。

结果

在平均 10.9 年的随访后,有 405 名参与者(7.7%)发生了糖尿病。我们的评分基于年龄、性别、腰围、糖尿病家族史、高血压和体力活动。我们的评分的曲线下面积(AUC)为 0.772,而其他两个评分的 AUC 分别为 0.748(p<0.001)和 0.774(p=0.668)。使用 13 分阈值,我们的评分的敏感性、特异性、阳性预测值(95%CI)分别为 60.5%(55.5-65.3)、77.1%(75.8-78.2)、18.0%(16.0-20.1)和 95.9%(95.2-96.5)。我们的评分在伊朗队列中的表现与其他两个评分相当或更好(AUC 0.542 与 0.564(p=0.476)和 0.513(p=0.300))和墨西哥队列(AUC 0.791 与 0.672(p<0.001)和 0.778(p=0.575))。在欧洲队列中,它与 Balkau 评分表现相似,但逊于 Kahn 临床评分(AUC 0.788 与 0.793(p=0.091)和 0.816(p<0.001))。我们的评分的诊断能力优于 Balkau 评分,与 Kahn 临床评分相当。

结论

与其他评分相比,我们基于临床的评分显示出令人鼓舞的结果,并且可以在具有不同糖尿病患病率的人群中使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e0c/6785081/bfeaa387a4ab/pone.0218933.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验