Suppr超能文献

使用智能手机应用程序识别临床相关行为趋势、症状报告、认知分数和运动水平:病例系列

Using a Smartphone App to Identify Clinically Relevant Behavior Trends Symptom Report, Cognition Scores, and Exercise Levels: A Case Series.

作者信息

Wisniewski Hannah, Henson Philip, Torous John

机构信息

Divison of Digital Psychiatry, Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.

出版信息

Front Psychiatry. 2019 Sep 23;10:652. doi: 10.3389/fpsyt.2019.00652. eCollection 2019.

Abstract

The use of smartphone apps for research and clinical care in mental health has become increasingly popular, especially within youth mental health. In particular, digital phenotyping, the monitoring of data streams from a smartphone to identify proxies for functional outcomes like steps, sleep, and sociability, is of interest due to the ability to monitor these multiple relevant indications of clinically symptomatic behavior. However, scientific progress in this field has been slow due to high heterogeneity among smartphone apps and lack of reproducibility. In this paper, we discuss how our division utilized a smartphone app to retrospectively identify clinically relevant behaviors in individuals with psychosis by measuring survey scores (symptom report), games (cognition scores), and step count (exercise levels). Further, we present specific cases of individuals and how the relevance of these data streams varied between them. We found that there was high variability between participants and that each individual's relevant behavior patterns relied heavily on unique data streams. This suggests that digital phenotyping has high potential to augment clinical care, as it could provide an efficient and individualized mechanism of identifying relevant clinical implications even if population-level models are not yet possible.

摘要

在精神卫生领域,使用智能手机应用程序进行研究和临床护理越来越普遍,尤其是在青少年心理健康方面。特别是数字表型分析,即通过监测智能手机的数据流来识别诸如步数、睡眠和社交能力等功能结果的替代指标,由于能够监测这些临床上有症状行为的多个相关指标而备受关注。然而,由于智能手机应用程序之间存在高度异质性且缺乏可重复性,该领域的科学进展一直缓慢。在本文中,我们讨论了我们部门如何利用智能手机应用程序,通过测量调查问卷分数(症状报告)、游戏(认知分数)和步数(运动水平),回顾性地识别精神病患者的临床相关行为。此外,我们展示了个体的具体案例,以及这些数据流在他们之间的相关性如何变化。我们发现参与者之间存在很大差异,而且每个人的相关行为模式严重依赖于独特的数据流。这表明数字表型分析有很大潜力增强临床护理,因为即使尚未建立人群水平的模型,它也可以提供一种高效且个性化的机制来识别相关的临床意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2aae/6767851/b46dbc8f5659/fpsyt-10-00652-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验