Yang X I A, Lozano-Durán A
Center for Turbulence Research, Stanford, 94305, USA.
J Fluid Mech. 2017 Aug 10;824. doi: 10.1017/jfm.2017.406.
The cascading process of turbulent kinetic energy from large-scale fluid motions to small-scale and lesser-scale fluid motions in isotropic turbulence may be modelled as a hierarchical random multiplicative process according to the multifractal formalism. In this work, we show that the same formalism might also be used to model the cascading process of momentum in wall-bounded turbulent flows. However, instead of being a multiplicative process, the momentum cascade process is additive. The proposed multifractal model is used for describing the flow kinematics of the low-pass filtered streamwise wall-shear stress fluctuation , where is the filtering length scale. According to the multifractal formalism, and in the log-region, where is the friction Reynolds number, is a real number, is an outer length scale and is the anomalous exponent of the momentum cascade. These scalings are supported by the data from a direct numerical simulation of channel flow at = 4200.
在各向同性湍流中,湍动能从大尺度流体运动向小尺度及更小尺度流体运动的级联过程,根据多重分形形式理论,可被建模为一个分层随机乘法过程。在这项工作中,我们表明相同的形式理论也可用于对壁面边界湍流中动量的级联过程进行建模。然而,动量级联过程并非乘法过程,而是加法过程。所提出的多重分形模型用于描述低通滤波后的流向壁面剪应力波动的流动运动学,其中 是滤波长度尺度。根据多重分形形式理论,在对数区域中, 和 ,其中 是摩擦雷诺数, 是实数, 是外部长度尺度, 是动量级联的反常指数。这些标度关系得到了 = 4200 时槽道流直接数值模拟数据的支持。