Suppr超能文献

一种用于高雷诺数壁面边界流动中被动标量的分层随机加法模型。

A hierarchical random additive model for passive scalars in wall-bounded flows at high Reynolds numbers.

作者信息

Yang Xiang I A, Abkar Mahdi

机构信息

Center for Turbulence Research, Stanford University, Stanford, CA 94305, USA.

Mechanical and Nuclear Engineering, Penn State University, State College, PA 16801, USA.

出版信息

J Fluid Mech. 2018 May 10;842:354-380. doi: 10.1017/jfm.2018.139.

Abstract

The kinematics of a fully developed passive scalar is modelled using the hierarchical random additive process (HRAP) formalism. Here, 'a fully developed passive scalar' refers to a scalar field whose instantaneous fluctuations are statistically stationary, and the 'HRAP formalism' is a recently proposed interpretation of the Townsend attached eddy hypothesis. The HRAP model was previously used to model the kinematics of velocity fluctuations in wall turbulence: , where the instantaneous streamwise velocity fluctuation at a generic wall-normal location is modelled as a sum of additive contributions from wall-attached eddies ( ) and the number of addends is ~ log(/). The HRAP model admits generalized logarithmic scalings including 〈 〉~log(/), 〈()(+ )〉 ~ log(/ ), 〈(() - (+ ))〉 ~ log( /), where is the streamwise velocity fluctuation, is an outer length scale, is the two-point displacement in the streamwise direction and 〈·〉 denotes ensemble averaging. If the statistical behaviours of the streamwise velocity fluctuation and the fluctuation of a passive scalar are similar, we can expect first that the above mentioned scalings also exist for passive scalars (i.e. for being fluctuations of scalar concentration) and second that the instantaneous fluctuations of a passive scalar can be modelled using the HRAP model as well. Such expectations are confirmed using large-eddy simulations. Hence the work here presents a framework for modelling scalar turbulence in high Reynolds number wall-bounded flows.

摘要

利用分层随机加法过程(HRAP)形式体系对充分发展的被动标量的运动学进行建模。这里,“充分发展的被动标量”指的是一个标量场,其瞬时涨落在统计上是平稳的,而“HRAP形式体系”是最近提出的对汤森德附着涡假设的一种解释。HRAP模型先前被用于对壁面湍流中速度涨落的运动学进行建模: ,其中在一般壁面法向位置处的瞬时流向速度涨落被建模为来自附着于壁面的涡( )的加法贡献之和,并且加数的数量为 ~ log(/)。HRAP模型允许广义对数标度,包括〈 〉~log(/),〈()(+ )〉 ~ log(/ ),〈(() - (+ ))〉 ~ log( /),其中 是流向速度涨落, 是外部长度尺度, 是流向方向上的两点位移,〈·〉表示系综平均。如果流向速度涨落和被动标量涨落的统计行为相似,我们首先可以预期上述标度对于被动标量也存在(即对于 是标量浓度的涨落),其次可以预期被动标量的瞬时涨落也可以用HRAP模型进行建模。通过大涡模拟证实了这些预期。因此,这里的工作提出了一个用于对高雷诺数壁面边界流中的标量湍流进行建模的框架。

相似文献

3
6
7
Bounded dissipation law and profiles of turbulent velocity moments in wall flows.壁面流动中的有界耗散定律与湍流速度矩剖面
Proc Natl Acad Sci U S A. 2025 Apr 29;122(17):e2502265122. doi: 10.1073/pnas.2502265122. Epub 2025 Apr 24.
8
Fluctuations of a passive scalar in a turbulent mixing layer.湍流混合层中被动标量的波动
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Sep;88(3):033013. doi: 10.1103/PhysRevE.88.033013. Epub 2013 Sep 19.
10
The Onsager theory of wall-bounded turbulence and Taylor's momentum anomaly.昂萨格壁面约束湍流理论与泰勒动量异常
Philos Trans A Math Phys Eng Sci. 2022 Mar 7;380(2218):20210079. doi: 10.1098/rsta.2021.0079. Epub 2022 Jan 17.

本文引用的文献

4
Turbulent pipe flow at extreme Reynolds numbers.极端雷诺数下的湍流管道流。
Phys Rev Lett. 2012 Mar 2;108(9):094501. doi: 10.1103/PhysRevLett.108.094501. Epub 2012 Feb 28.
5
Large-scale influences in near-wall turbulence.近壁湍流中的大尺度影响。
Philos Trans A Math Phys Eng Sci. 2007 Mar 15;365(1852):647-64. doi: 10.1098/rsta.2006.1942.
6
Evidence of the kappa1-1 law in a high-Reynolds-number turbulent boundary layer.高雷诺数湍流边界层中卡帕1-1定律的证据。
Phys Rev Lett. 2005 Aug 12;95(7):074501. doi: 10.1103/PhysRevLett.95.074501. Epub 2005 Aug 9.
7
Scalar turbulence.标量湍流
Nature. 2000 Jun 8;405(6787):639-46. doi: 10.1038/35015000.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验