Unuchek Dmitrii, Ciarrocchi Alberto, Avsar Ahmet, Sun Zhe, Watanabe Kenji, Taniguchi Takashi, Kis Andras
Electrical Engineering Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Nat Nanotechnol. 2019 Dec;14(12):1104-1109. doi: 10.1038/s41565-019-0559-y. Epub 2019 Oct 21.
Valleytronics is an appealing alternative to conventional charge-based electronics that aims at encoding data in the valley degree of freedom, that is, the information as to which extreme of the conduction or valence band carriers are occupying. The ability to create and control valley currents in solid-state devices could therefore enable new paradigms for information processing. Transition metal dichalcogenides (TMDCs) are a promising platform for valleytronics due to the presence of two inequivalent valleys with spin-valley locking and a direct bandgap, which allows optical initialization and readout of the valley state. Recent progress on the control of interlayer excitons in these materials could offer an effective way to realize optoelectronic devices based on the valley degree of freedom. Here, we show the generation and transport over mesoscopic distances of valley-polarized excitons in a device based on a type-II TMDC heterostructure. Engineering of the interlayer coupling results in enhanced diffusion of valley-polarized excitons, which can be controlled and switched electrically. Furthermore, using electrostatic traps, we can increase the exciton concentration by an order of magnitude, reaching densities in the order of 10 cm, opening the route to achieving a coherent quantum state of valley-polarized excitons via Bose-Einstein condensation.
谷电子学是传统基于电荷的电子学的一种有吸引力的替代方案,其旨在以谷自由度对数据进行编码,即关于导带或价带中的载流子占据哪个极值的信息。因此,在固态器件中产生和控制谷电流的能力可以为信息处理带来新的范例。过渡金属二硫属化物(TMDC)由于存在两个具有自旋 - 谷锁定的不等价谷和直接带隙,是谷电子学的一个有前景的平台,这允许对谷态进行光学初始化和读出。这些材料中层间激子控制方面的最新进展可能为基于谷自由度实现光电器件提供一种有效方法。在这里,我们展示了在基于II型TMDC异质结构的器件中谷极化激子在介观距离上的产生和传输。层间耦合的工程设计导致谷极化激子的扩散增强,这可以通过电方式进行控制和切换。此外,使用静电陷阱,我们可以将激子浓度提高一个数量级,达到约10¹² cm⁻³ 的密度,为通过玻色 - 爱因斯坦凝聚实现谷极化激子的相干量子态开辟了道路。