Institut für Experimentelle und Angewandte Physik, Universität Regensburg, D-93040, Regensburg, Germany.
High Field Magnet Laboratory (HFML-EMFL), Radboud University, 6525 ED, Nijmegen, The Netherlands.
Nat Commun. 2017 Nov 16;8(1):1551. doi: 10.1038/s41467-017-01748-1.
Monolayers of semiconducting transition metal dichalcogenides exhibit intriguing fundamental physics of strongly coupled spin and valley degrees of freedom for charge carriers. While the possibility of exploiting these properties for information processing stimulated concerted research activities towards the concept of valleytronics, maintaining control over spin-valley polarization proved challenging in individual monolayers. A promising alternative route explores type II band alignment in artificial van der Waals heterostructures. The resulting formation of interlayer excitons combines the advantages of long carrier lifetimes and spin-valley locking. Here, we demonstrate artificial design of a two-dimensional heterostructure enabling intervalley transitions that are not accessible in monolayer systems. The resulting giant effective g factor of -15 for interlayer excitons induces near-unity valley polarization via valley-selective energetic splitting in high magnetic fields, even after nonselective excitation. Our results highlight the potential to deterministically engineer novel valley properties in van der Waals heterostructures using crystallographic alignment.
半导体过渡金属二卤族化合物的单层具有有趣的基础物理特性,其中包括对载流子的强耦合自旋和谷自由度的控制。虽然利用这些特性进行信息处理的可能性激发了人们对谷电子学概念的协同研究活动,但在单个单层中保持对自旋-谷极化的控制仍然具有挑战性。一种有前途的替代途径是探索人工范德华异质结构中的 II 型能带排列。由此形成的层间激子结合了长载流子寿命和自旋-谷锁定的优点。在这里,我们展示了一种二维异质结构的人工设计,该设计能够实现单层系统中无法实现的谷间跃迁。由此产生的层间激子的巨大有效 g 因子为-15,通过在高磁场中进行谷选择性的能量分裂,即使在非选择性激发后,也能诱导近 1 的谷极化。我们的结果强调了使用晶体学对准在范德华异质结构中确定性地设计新型谷特性的潜力。