Suppr超能文献

OCT 血管造影图像中视网膜微血管的 3D 形状建模与分析。

3D Shape Modeling and Analysis of Retinal Microvasculature in OCT-Angiography Images.

出版信息

IEEE Trans Med Imaging. 2020 May;39(5):1335-1346. doi: 10.1109/TMI.2019.2948867. Epub 2019 Oct 22.

Abstract

3D optical coherence tomography angiography (OCT-A) is a novel and non-invasive imaging modality for analyzing retinal diseases. The studies of microvasculature in 2D en face projection images have been widely implemented, but comprehensive 3D analysis of OCT-A images with rich depth-resolved microvascular information is rarely considered. In this paper, we propose a robust, effective, and automatic 3D shape modeling framework to provide a high-quality 3D vessel representation and to preserve valuable 3D geometric and topological information for vessel analysis. Effective vessel enhancement and extraction steps by means of curvelet denoising and optimally oriented flux (OOF) filtering are first designed to produce 3D microvascular networks. Afterwards, a novel 3D data representation of OCT-A microvasculature is reconstructed via advanced mesh reconstruction techniques. Based on the 3D surfaces, shape analysis is established to extract novel shape-based microvascular area distortion via the Laplace-Beltrami eigen-projection. The extracted feature is integrated into a graph-cut segmentation system to categorize large vessels and small capillaries for more precise shape analysis. The proposed framework is validated on a dedicated repeated scan dataset including 260 volume images and shows high repeatability. Statistical analysis using the surface area biomarker is performed on small capillaries to avoid the effect of tailing artifact from large vessels. It shows significant differences ( ) between DR stages on 100 subjects in a OCTA-DR dataset. The proposed shape modeling and analysis framework opens the possibility for further investigating OCT-A microvasculature in a new perspective.

摘要

3D 光学相干断层扫描血管造影术(OCT-A)是一种用于分析视网膜疾病的新型无创成像方式。在 2D 正面投影图像中对微血管进行研究已经得到广泛应用,但很少考虑对 OCT-A 图像进行全面的 3D 分析,这些图像具有丰富的深度分辨微血管信息。在本文中,我们提出了一个强大、有效且自动化的 3D 形状建模框架,用于提供高质量的 3D 血管表示,并保留用于血管分析的有价值的 3D 几何和拓扑信息。首先,通过曲波去噪和最优流向(OOF)滤波设计有效的血管增强和提取步骤,以产生 3D 微血管网络。然后,通过先进的网格重建技术对 OCT-A 微血管的 3D 数据进行重建。基于 3D 曲面,建立形状分析以通过拉普拉斯-贝尔特拉米特征投影提取新的基于形状的微血管面积变形。提取的特征被集成到图割分割系统中,以对大血管和毛细血管进行分类,从而进行更精确的形状分析。该框架在一个专用的重复扫描数据集上进行了验证,该数据集包括 260 个体积图像,显示出高度的可重复性。在 OCTA-DR 数据集的 100 个对象上,使用表面积生物标志物对小血管进行统计分析,以避免大血管尾部伪影的影响。在 100 个对象的 OCTA-DR 数据集上,DR 阶段之间存在显著差异()。所提出的形状建模和分析框架为进一步从新的角度研究 OCT-A 微血管开辟了可能性。

相似文献

3
3D Retinal Vessel Density Mapping With OCT-Angiography.OCT-Angiography 下的 3D 视网膜血管密度测绘。
IEEE J Biomed Health Inform. 2020 Dec;24(12):3466-3479. doi: 10.1109/JBHI.2020.3023308. Epub 2020 Dec 4.
4
ROSE: A Retinal OCT-Angiography Vessel Segmentation Dataset and New Model.ROSE:一个视网膜 OCT-A 血管分割数据集和新模型。
IEEE Trans Med Imaging. 2021 Mar;40(3):928-939. doi: 10.1109/TMI.2020.3042802. Epub 2021 Mar 2.

引用本文的文献

6
OCT angiography and its retinal biomarkers [Invited].光学相干断层扫描血管造影及其视网膜生物标志物[特邀文章]
Biomed Opt Express. 2023 Aug 10;14(9):4542-4566. doi: 10.1364/BOE.495627. eCollection 2023 Sep 1.

本文引用的文献

7
Segmentation Based Sparse Reconstruction of Optical Coherence Tomography Images.基于分割的光学相干断层扫描图像稀疏重建
IEEE Trans Med Imaging. 2017 Feb;36(2):407-421. doi: 10.1109/TMI.2016.2611503. Epub 2016 Sep 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验