IEEE Trans Med Imaging. 2020 May;39(5):1335-1346. doi: 10.1109/TMI.2019.2948867. Epub 2019 Oct 22.
3D optical coherence tomography angiography (OCT-A) is a novel and non-invasive imaging modality for analyzing retinal diseases. The studies of microvasculature in 2D en face projection images have been widely implemented, but comprehensive 3D analysis of OCT-A images with rich depth-resolved microvascular information is rarely considered. In this paper, we propose a robust, effective, and automatic 3D shape modeling framework to provide a high-quality 3D vessel representation and to preserve valuable 3D geometric and topological information for vessel analysis. Effective vessel enhancement and extraction steps by means of curvelet denoising and optimally oriented flux (OOF) filtering are first designed to produce 3D microvascular networks. Afterwards, a novel 3D data representation of OCT-A microvasculature is reconstructed via advanced mesh reconstruction techniques. Based on the 3D surfaces, shape analysis is established to extract novel shape-based microvascular area distortion via the Laplace-Beltrami eigen-projection. The extracted feature is integrated into a graph-cut segmentation system to categorize large vessels and small capillaries for more precise shape analysis. The proposed framework is validated on a dedicated repeated scan dataset including 260 volume images and shows high repeatability. Statistical analysis using the surface area biomarker is performed on small capillaries to avoid the effect of tailing artifact from large vessels. It shows significant differences ( ) between DR stages on 100 subjects in a OCTA-DR dataset. The proposed shape modeling and analysis framework opens the possibility for further investigating OCT-A microvasculature in a new perspective.
3D 光学相干断层扫描血管造影术(OCT-A)是一种用于分析视网膜疾病的新型无创成像方式。在 2D 正面投影图像中对微血管进行研究已经得到广泛应用,但很少考虑对 OCT-A 图像进行全面的 3D 分析,这些图像具有丰富的深度分辨微血管信息。在本文中,我们提出了一个强大、有效且自动化的 3D 形状建模框架,用于提供高质量的 3D 血管表示,并保留用于血管分析的有价值的 3D 几何和拓扑信息。首先,通过曲波去噪和最优流向(OOF)滤波设计有效的血管增强和提取步骤,以产生 3D 微血管网络。然后,通过先进的网格重建技术对 OCT-A 微血管的 3D 数据进行重建。基于 3D 曲面,建立形状分析以通过拉普拉斯-贝尔特拉米特征投影提取新的基于形状的微血管面积变形。提取的特征被集成到图割分割系统中,以对大血管和毛细血管进行分类,从而进行更精确的形状分析。该框架在一个专用的重复扫描数据集上进行了验证,该数据集包括 260 个体积图像,显示出高度的可重复性。在 OCTA-DR 数据集的 100 个对象上,使用表面积生物标志物对小血管进行统计分析,以避免大血管尾部伪影的影响。在 100 个对象的 OCTA-DR 数据集上,DR 阶段之间存在显著差异()。所提出的形状建模和分析框架为进一步从新的角度研究 OCT-A 微血管开辟了可能性。