Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.
Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia.
Nat Commun. 2019 Oct 25;10(1):4887. doi: 10.1038/s41467-019-12640-5.
Accumulation of DNA lesions causing transcription stress is associated with natural and accelerated aging and culminates with profound metabolic alterations. Our understanding of the mechanisms governing metabolic redesign upon genomic instability, however, is highly rudimentary. Using Ercc1-defective mice and Xpg knock-out mice, we demonstrate that combined defects in transcription-coupled DNA repair (TCR) and in nucleotide excision repair (NER) directly affect bioenergetics due to declined transcription, leading to increased ATP levels. This in turn inhibits glycolysis allosterically and favors glucose rerouting through the pentose phosphate shunt, eventually enhancing production of NADPH-reducing equivalents. In NER/TCR-defective mutants, augmented NADPH is not counterbalanced by increased production of pro-oxidants and thus pentose phosphate potentiation culminates in an over-reduced redox state. Skin fibroblasts from the TCR disease Cockayne syndrome confirm results in animal models. Overall, these findings unravel a mechanism connecting DNA damage and transcriptional stress to metabolic redesign and protective antioxidant defenses.
导致转录应激的 DNA 损伤积累与自然和加速衰老有关,并最终导致深刻的代谢改变。然而,我们对基因组不稳定性时代谢重新设计的机制的理解还非常初级。使用 Ercc1 缺陷型小鼠和 Xpg 敲除型小鼠,我们证明转录偶联 DNA 修复 (TCR) 和核苷酸切除修复 (NER) 的联合缺陷直接影响生物能量学,因为转录下降导致 ATP 水平增加。这反过来又通过变构抑制糖酵解并有利于葡萄糖通过戊糖磷酸途径重新路由,最终增强 NADPH 还原当量的产生。在 NER/TCR 缺陷型突变体中,增加的 NADPH 不能通过增加的产生活性氧物质来平衡,因此戊糖磷酸的增强最终导致过度还原的氧化还原状态。来自 TCR 疾病 Cockayne 综合征的皮肤成纤维细胞证实了动物模型中的结果。总的来说,这些发现揭示了一种将 DNA 损伤和转录应激与代谢重新设计和保护性抗氧化防御联系起来的机制。