Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina.
Departamento de Química Biológica, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), UNC-CONICET, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina.
Cell Mol Life Sci. 2020 May;77(9):1681-1694. doi: 10.1007/s00018-019-03346-4. Epub 2019 Oct 25.
In the last few years, erythrocytes have emerged as the main determinant of blood rheology. In mammals, these cells are devoid of nuclei and are, therefore, unable to divide. Consequently, all circulating erythrocytes come from erythropoiesis, a process in the bone marrow in which several modifications are induced in the expression of membrane and cytoskeletal proteins, and different vertical and horizontal interactions are established between them. Cytoskeleton components play an important role in this process, which explains why they and the interaction between them have been the focus of much recent research. Moreover, in mature erythrocytes, the cytoskeleton integrity is also essential, because the cytoskeleton confers remarkable deformability and stability on the erythrocytes, thus enabling them to undergo deformation in microcirculation. Defects in the cytoskeleton produce changes in erythrocyte deformability and stability, affecting cell viability and rheological properties. Such abnormalities are seen in different pathologies of special interest, such as different types of anemia, hypertension, and diabetes, among others. This review highlights the main findings in mammalian erythrocytes and their progenitors regarding the presence, conformation and function of the three main components of the cytoskeleton: actin, intermediate filaments, and tubulin.
在过去的几年中,红细胞已成为血液流变学的主要决定因素。在哺乳动物中,这些细胞没有细胞核,因此无法分裂。因此,所有循环中的红细胞都来自于骨髓中的红细胞生成,在此过程中,膜和细胞骨架蛋白的表达会发生多种变化,并在它们之间建立不同的垂直和水平相互作用。细胞骨架成分在这个过程中起着重要的作用,这也解释了为什么它们以及它们之间的相互作用是最近许多研究的焦点。此外,在成熟的红细胞中,细胞骨架的完整性也是必不可少的,因为细胞骨架赋予红细胞显著的变形性和稳定性,从而使它们能够在微循环中变形。细胞骨架的缺陷会导致红细胞变形性和稳定性的改变,影响细胞的活力和流变学特性。这种异常在一些特殊病理情况下很常见,如不同类型的贫血、高血压和糖尿病等。本文综述了哺乳动物红细胞及其前体细胞中细胞骨架的三个主要成分(肌动蛋白、中间丝和微管)的存在、构象和功能的主要发现。