Suppr超能文献

人类红细胞:细胞骨架及其起源。

Human erythrocytes: cytoskeleton and its origin.

机构信息

Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina.

Departamento de Química Biológica, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), UNC-CONICET, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina.

出版信息

Cell Mol Life Sci. 2020 May;77(9):1681-1694. doi: 10.1007/s00018-019-03346-4. Epub 2019 Oct 25.

Abstract

In the last few years, erythrocytes have emerged as the main determinant of blood rheology. In mammals, these cells are devoid of nuclei and are, therefore, unable to divide. Consequently, all circulating erythrocytes come from erythropoiesis, a process in the bone marrow in which several modifications are induced in the expression of membrane and cytoskeletal proteins, and different vertical and horizontal interactions are established between them. Cytoskeleton components play an important role in this process, which explains why they and the interaction between them have been the focus of much recent research. Moreover, in mature erythrocytes, the cytoskeleton integrity is also essential, because the cytoskeleton confers remarkable deformability and stability on the erythrocytes, thus enabling them to undergo deformation in microcirculation. Defects in the cytoskeleton produce changes in erythrocyte deformability and stability, affecting cell viability and rheological properties. Such abnormalities are seen in different pathologies of special interest, such as different types of anemia, hypertension, and diabetes, among others. This review highlights the main findings in mammalian erythrocytes and their progenitors regarding the presence, conformation and function of the three main components of the cytoskeleton: actin, intermediate filaments, and tubulin.

摘要

在过去的几年中,红细胞已成为血液流变学的主要决定因素。在哺乳动物中,这些细胞没有细胞核,因此无法分裂。因此,所有循环中的红细胞都来自于骨髓中的红细胞生成,在此过程中,膜和细胞骨架蛋白的表达会发生多种变化,并在它们之间建立不同的垂直和水平相互作用。细胞骨架成分在这个过程中起着重要的作用,这也解释了为什么它们以及它们之间的相互作用是最近许多研究的焦点。此外,在成熟的红细胞中,细胞骨架的完整性也是必不可少的,因为细胞骨架赋予红细胞显著的变形性和稳定性,从而使它们能够在微循环中变形。细胞骨架的缺陷会导致红细胞变形性和稳定性的改变,影响细胞的活力和流变学特性。这种异常在一些特殊病理情况下很常见,如不同类型的贫血、高血压和糖尿病等。本文综述了哺乳动物红细胞及其前体细胞中细胞骨架的三个主要成分(肌动蛋白、中间丝和微管)的存在、构象和功能的主要发现。

相似文献

1
Human erythrocytes: cytoskeleton and its origin.人类红细胞:细胞骨架及其起源。
Cell Mol Life Sci. 2020 May;77(9):1681-1694. doi: 10.1007/s00018-019-03346-4. Epub 2019 Oct 25.
4
Dynamic filaments of the bacterial cytoskeleton.细菌细胞骨架的动态细丝。
Annu Rev Biochem. 2006;75:467-92. doi: 10.1146/annurev.biochem.75.103004.142452.
7
Quality control of cytoskeletal proteins and human disease.细胞骨架蛋白的质量控制与人类疾病。
Trends Biochem Sci. 2010 May;35(5):288-97. doi: 10.1016/j.tibs.2009.12.007. Epub 2010 Jan 28.
8
The molecules of the cell matrix.细胞基质的分子
Sci Am. 1985 Oct;253(4):110-20. doi: 10.1038/scientificamerican1085-110.
9
The bacterial cytoskeleton.细菌细胞骨架
Microbiol Mol Biol Rev. 2006 Sep;70(3):729-54. doi: 10.1128/MMBR.00017-06.

引用本文的文献

9
Role of SLC4 and SLC26 solute carriers during oxidative stress.SLC4 和 SLC26 溶质载体在氧化应激中的作用。
Acta Physiol (Oxf). 2022 May;235(1):e13796. doi: 10.1111/apha.13796. Epub 2022 Mar 1.

本文引用的文献

4
Squeezing for Life - Properties of Red Blood Cell Deformability.为生命而挤压——红细胞变形性的特性
Front Physiol. 2018 Jun 1;9:656. doi: 10.3389/fphys.2018.00656. eCollection 2018.
8
10
Stress Erythropoiesis Model Systems.应激红细胞生成模型系统
Methods Mol Biol. 2018;1698:91-102. doi: 10.1007/978-1-4939-7428-3_5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验