School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin.
Morgridge Institute for Research, Madison, Wisconsin.
J Mass Spectrom. 2020 Apr;55(4):e4452. doi: 10.1002/jms.4452. Epub 2020 Jan 21.
Patient-derived 3D organoids show great promise for understanding patient heterogeneity and chemotherapy response in human-derived tissue. The combination of organoid culture techniques with mass spectrometry imaging provides a label-free methodology for characterizing drug penetration, patient-specific response, and drug biotransformation. However, current methods used to grow tumor organoids employ extracellular matrices that can produce small molecule background signal during mass spectrometry imaging analysis. Here, we develop a method to isolate 3D human tumor organoids out of a Matrigel extracellular matrix into gelatin mass spectrometry compatible microarrays for high-throughput mass spectrometry imaging analysis. The alignment of multiple organoids in the same z-axis is essential for sectioning organoids together and for maintaining reproducible sample preparation on a single glass slide for up to hundreds of organoids. This method successfully removes organoids from extracellular matrix interference and provides an organized array for high-throughput imaging analysis to easily identify organoids by eye for area selection and further analysis. With this method, mass spectrometry imaging can be readily applied to organoid systems for preclinical drug development and personalized medicine research initiatives.
患者来源的 3D 类器官在理解患者异质性和人源组织中的化疗反应方面具有巨大的潜力。类器官培养技术与质谱成像的结合为描述药物渗透、患者特异性反应和药物生物转化提供了一种无标记的方法。然而,目前用于培养肿瘤类器官的方法使用细胞外基质,在质谱成像分析过程中会产生小分子背景信号。在这里,我们开发了一种将 3D 人肿瘤类器官从 Matrigel 细胞外基质中分离出来,放入明胶质谱兼容微阵列中进行高通量质谱成像分析的方法。在同一 z 轴上对多个类器官进行对齐对于将类器官一起切片以及在单个载玻片上保持可重复的样品制备至关重要,最多可容纳数百个类器官。该方法成功地消除了细胞外基质干扰,并提供了一个有序的阵列,便于通过肉眼识别类器官,以便进行面积选择和进一步分析。通过这种方法,质谱成像可以很容易地应用于类器官系统,用于临床前药物开发和个性化医学研究计划。