Suppr超能文献

不同溶剂化和静电模型在泛素分子动力学模拟中的应用:X射线结构的“维持”效果如何?

The application of different solvation and electrostatic models in molecular dynamics simulations of ubiquitin: how well is the X-ray structure "maintained"?

作者信息

Fox T, Kollman P A

机构信息

Department of Pharmaceutical Chemistry, University of California, San Francisco 94143-0446, USA.

出版信息

Proteins. 1996 Jul;25(3):315-34. doi: 10.1002/(SICI)1097-0134(199607)25:3<315::AID-PROT4>3.0.CO;2-E.

Abstract

We present molecular dynamics simulations on ubiquitin with explicit solvent molecules and investigate the influence of different force fields [Weiner et al. (J. Am. Chem. Soc. 106:765-784, 1984; J. Comput. Chem. 7:230-252, 1986) vs. Cornell et al. (J. Am. Chem. Soc. 117:5179-5197, 1995)], different treatments of the long-range electrostatic interaction (8 A cutoff vs. particle mesh Ewald), and different solvation models (periodic box vs. small shell of water molecules) on the structure and the dynamics of the protein. Structural data are monitored by atomic root mean square deviations (RMSDs) from the crystal structure, the radius of gyration, the solvent-accessible surface area, and the pattern of the backbone hydrogen bonds. The dynamic behavior is assessed by the atomic fluctuations and the order parameters of the N-H backbone vectors. With the Cornell et al. force field and a periodic box model, the simulated structures stay much closer to the experimental X-ray structure than with the older Weiner et al. force field. A further improvement of the simulation is found when the electrostatic interaction is evaluated with the particle mesh Ewald method; after 1.2 ns of simulation the backbone RMSD amounts to only 1.13 A. The analysis of the dynamic parameters shows that this good structural agreement is not due to a damping of internal motion in the protein. For a given length of simulation time, the shell models achieve an agreement between simulated and experimental structures that is comparable to the best models that employ a periodic box of solvent models. However, compared with the box models, the fluctuations of the protein atoms in the shell models are smaller, and only with simulation times as long as 2 ns do they become of comparable size to the experimental ones.

摘要

我们对带有显式溶剂分子的泛素进行了分子动力学模拟,并研究了不同力场[韦纳等人(《美国化学会志》106:765 - 784,1984;《计算化学杂志》7:230 - 252,1986)与康奈尔等人(《美国化学会志》117:5179 - 5197,1995)]、长程静电相互作用的不同处理方式(8 Å截断与粒子网格埃瓦尔德方法)以及不同溶剂化模型(周期性盒子与水分子小壳层)对蛋白质结构和动力学的影响。通过与晶体结构的原子均方根偏差(RMSD)、回转半径、溶剂可及表面积以及主链氢键模式来监测结构数据。通过原子涨落和N - H主链向量的序参数来评估动力学行为。使用康奈尔等人的力场和周期性盒子模型时,模拟结构比使用较旧的韦纳等人的力场时更接近实验X射线结构。当用粒子网格埃瓦尔德方法评估静电相互作用时,模拟有进一步改进;模拟1.2 ns后,主链RMSD仅为1.13 Å。对动力学参数的分析表明,这种良好的结构一致性并非由于蛋白质内部运动的阻尼。对于给定的模拟时间长度,壳层模型在模拟结构与实验结构之间达成的一致性与采用溶剂模型周期性盒子的最佳模型相当。然而,与盒子模型相比,壳层模型中蛋白质原子的涨落较小,只有在模拟时间长达2 ns时,它们的大小才与实验值相当。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验