Suppr超能文献

gmXtal:使用 GROMACS 烹饪晶体。

gmXtal: Cooking Crystals with GROMACS.

机构信息

Department of Chemistry and Nanoscience Center, University of Jyväskylä, 40014, Jyväskylä, Finland.

出版信息

Protein J. 2024 Apr;43(2):200-206. doi: 10.1007/s10930-023-10141-5. Epub 2023 Aug 25.

Abstract

Molecular dynamics (MD) simulations are routinely performed of biomolecules in solution, because this is their native environment. However, the structures used in such simulations are often obtained with X-ray crystallography, which provides the atomic coordinates of the biomolecule in a crystal environment. With the advent of free electron lasers and time-resolved techniques, X-ray crystallography can now also access metastable states that are intermediates in a biochemical process. Such experiments provide additional data, which can be used, for example, to optimize MD force fields. Doing so requires that the simulation of the biomolecule is also performed in the crystal environment. However, in contrast to simulations of biomolecules in solution, setting up a crystal is challenging. In particular, because not all solvent molecules are resolved in X-ray crystallography, adding a suitable number of solvent molecules, such that the properties of the crystallographic unit cell are preserved in the simulation, can be difficult and typically is a trial-and-error based procedure requiring manual interventions. Such interventions preclude high throughput applications. To overcome this bottleneck, we introduce gmXtal, a tool for setting up crystal simulations for MD simulations with GROMACS. With the information from the protein data bank (rcsb.org) gmXtal automatically (i) builds the crystallographic unit cell; (ii) sets the protonation of titratable residues; (iii) builds missing residues that were not resolved experimentally; and (iv) adds an appropriate number of solvent molecules to the system. gmXtal is available as a standalone tool https://gitlab.com/pbuslaev/gmxtal .

摘要

分子动力学 (MD) 模拟通常在溶液中的生物分子中进行,因为这是它们的天然环境。然而,此类模拟中使用的结构通常是通过 X 射线晶体学获得的,该技术提供了生物分子在晶体环境中的原子坐标。随着自由电子激光和时间分辨技术的出现,X 射线晶体学现在也可以访问处于生化过程中间的亚稳态。此类实验提供了额外的数据,例如,可用于优化 MD 力场。这样做需要在晶体环境中模拟生物分子。然而,与在溶液中模拟生物分子相比,设置晶体具有挑战性。特别是,由于在 X 射线晶体学中并非所有溶剂分子都能被解析,因此添加适量的溶剂分子(以保持晶体学单元的性质在模拟中不变)可能很困难,通常需要手动干预的反复试验过程。这种干预排除了高通量应用。为了克服这一瓶颈,我们引入了 gmXtal,这是一种用于在 GROMACS 中为 MD 模拟设置晶体模拟的工具。借助来自蛋白质数据库(rcsb.org)的信息,gmXtal 可以自动:(i) 构建晶体学单元;(ii) 对可质子化残基进行质子化;(iii) 构建实验中未解析的缺失残基;以及 (iv) 向系统中添加适量的溶剂分子。gmXtal 可作为独立工具在 https://gitlab.com/pbuslaev/gmxtal 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31dd/11058868/8abcc721cb7e/10930_2023_10141_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验