Suppr超能文献

预测髋关节或膝关节置换术患者住院时间的机器学习预测模型:来自高容量单中心多变量分析的结果

Machine Learning Prediction Model to Predict Length of Stay of Patients Undergoing Hip or Knee Arthroplasties: Results from a High-Volume Single-Center Multivariate Analysis.

作者信息

Di Matteo Vincenzo, Tommasini Tobia, Morandini Pierandrea, Savevski Victor, Grappiolo Guido, Loppini Mattia

机构信息

Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy.

Orthopedics and Trauma Surgery Unit, Department of Aging, Orthopedic and Rheumatologic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy.

出版信息

J Clin Med. 2024 Aug 31;13(17):5180. doi: 10.3390/jcm13175180.

Abstract

The growth of arthroplasty procedures requires innovative strategies to reduce inpatients' hospital length of stay (LOS). This study aims to develop a machine learning prediction model that may aid in predicting LOS after hip or knee arthroplasties. A collection of all the clinical notes of patients who underwent elective primary or revision arthroplasty from 1 January 2019 to 31 December 2019 was performed. The hospitalization was classified as "short LOS" if it was less than or equal to 6 days and "long LOS" if it was greater than 7 days. Clinical data from pre-operative laboratory analysis, vital parameters, and demographic characteristics of patients were screened. Final data were used to train a logistic regression model with the aim of predicting short or long LOS. The final dataset was composed of 1517 patients (795 "long LOS", 722 "short LOS", = 0.3196) with a total of 1541 hospital admissions (729 "long LOS", 812 "short LOS", < 0.001). The complete model had a prediction efficacy of 78.99% (AUC 0.7899). Machine learning may facilitate day-by-day clinical practice determination of which patients are suitable for a shorter LOS and which for a longer LOS, in which a cautious approach could be recommended.

摘要

关节置换手术数量的增长需要创新策略来缩短住院患者的住院时长(LOS)。本研究旨在开发一种机器学习预测模型,以辅助预测髋关节或膝关节置换术后的住院时长。收集了2019年1月1日至2019年12月31日期间接受择期初次或翻修关节置换术患者的所有临床记录。若住院时间小于或等于6天,则归类为“短住院时长”;若大于7天,则归类为“长住院时长”。筛选了患者术前实验室分析、生命体征参数和人口统计学特征的临床数据。最终数据用于训练逻辑回归模型,目的是预测短或长住院时长。最终数据集由1517例患者组成(795例“长住院时长”,722例“短住院时长”, = 0.3196),共有1541次住院记录(729例“长住院时长”,812例“短住院时长”, < 0.001)。完整模型的预测效能为78.99%(AUC 0.7899)。机器学习可能有助于在日常临床实践中确定哪些患者适合较短的住院时长,哪些适合较长的住院时长,对此可推荐采取谨慎的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51ed/11395981/871e9c739760/jcm-13-05180-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验