Suppr超能文献

使用机器学习方法预测择期全肩关节置换术后非居家出院情况。

Using machine learning methods to predict nonhome discharge after elective total shoulder arthroplasty.

作者信息

Lopez Cesar D, Constant Michael, Anderson Matthew J J, Confino Jamie E, Heffernan John T, Jobin Charles M

机构信息

New York-Presbyterian/Columbia University Irving Medical Center, New York, NY, USA.

出版信息

JSES Int. 2021 Apr 20;5(4):692-698. doi: 10.1016/j.jseint.2021.02.011. eCollection 2021 Jul.

Abstract

BACKGROUND

Machine learning has shown potential in accurately predicting outcomes after orthopedic surgery, thereby allowing for improved patient selection, risk stratification, and preoperative planning. This study sought to develop machine learning models to predict nonhome discharge after total shoulder arthroplasty (TSA).

METHODS

The American College of Surgeons National Surgical Quality Improvement Program database was queried for patients who underwent elective TSA from 2012 to 2018. Boosted decision tree and artificial neural networks (ANN) machine learning models were developed to predict non-home discharge and 30-day postoperative complications. Model performance was measured using the area under the receiver operating characteristic curve (AUC) and overall accuracy (%). Multivariate binary logistic regression analyses were used to identify variables that were significantly associated with the predicted outcomes.

RESULTS

There were 21,544 elective TSA cases identified in the National Surgical Quality Improvement Program registry from 2012 to 2018 that met inclusion criteria. Multivariate logistic regression identified several variables associated with increased risk of nonhome discharge including female sex (odds ratio [OR] = 2.83; 95% confidence interval [CI] = 2.53-3.17;  < .001), age older than 70 years (OR = 3.19; 95% CI = 2.86-3.57;  < .001), American Society of Anesthesiologists classification 3 or greater (OR = 2.70; 95% CI = 2.41-2.03;  < .001), prolonged operative time (OR = 1.38; 95% CI = 1.20-1.58;  < .001), as well as history of diabetes (OR = 1.56; 95% CI = 1.38-1.75;  < .001), chronic obstructive pulmonary disease (OR = 1.71; 95% CI = 1.46-2.01;  < .001), congestive heart failure (OR = 2.65; 95% CI = 1.72-4.01;  < .001), hypertension (OR = 1.35; 95% CI = 1.20-1.52;  = .004), dialysis (OR = 3.58; 95% CI = 2.01-6.39;  = .002), wound infection (OR = 5.67; 95% CI = 3.46-9.29;  < .001), steroid use (OR = 1.43; 95% CI = 1.18-1.74;  = .010), and bleeding disorder (OR = 1.84; 95% CI = 1.45-2.34;  < .001). The boosted decision tree model for predicting nonhome discharge had an AUC of 0.788 and an overall accuracy of 90.3%. The ANN model for predicting nonhome discharge had an AUC of 0.851 and an overall accuracy of 89.9%. For predicting the occurrence of 1 or more postoperative complications, the boosted decision tree model had an AUC of 0.795 and an overall accuracy of 95.5%. The ANN model yielded an AUC of 0.788 and an overall accuracy of 92.5%.

CONCLUSIONS

Both the boosted decision tree and ANN models performed well in predicting nonhome discharge with similar overall accuracy, but the ANN had higher discriminative ability. Based on the findings of this study, machine learning has the potential to accurately predict nonhome discharge after elective TSA. Surgeons can use such tools to guide patient expectations and to improve preoperative discharge planning, with the ultimate goal of decreasing hospital length of stay and improving cost-efficiency.

摘要

背景

机器学习已显示出在准确预测骨科手术后结果方面的潜力,从而有助于改善患者选择、风险分层和术前规划。本研究旨在开发机器学习模型以预测全肩关节置换术(TSA)后非回家出院情况。

方法

查询美国外科医师学会国家外科质量改进计划数据库中2012年至2018年接受择期TSA的患者。开发了增强决策树和人工神经网络(ANN)机器学习模型来预测非回家出院和术后30天并发症。使用受试者操作特征曲线下面积(AUC)和总体准确率(%)来衡量模型性能。多变量二元逻辑回归分析用于确定与预测结果显著相关的变量。

结果

2012年至2018年在国家外科质量改进计划登记处确定了21544例符合纳入标准的择期TSA病例。多变量逻辑回归确定了几个与非回家出院风险增加相关的变量,包括女性(比值比[OR]=2.83;95%置信区间[CI]=2.53 - 3.17;P<0.001)、年龄大于70岁(OR = 3.19;95% CI = 2.86 - 3.57;P<0.001)、美国麻醉医师协会分级为3级或更高(OR = 2.70;95% CI = 2.41 - 2.03;P<0.001)、手术时间延长(OR = 1.38;95% CI = 1.20 - 1.58;P<0.001),以及糖尿病史(OR = 1.56;95% CI = 1.38 - 1.75;P<0.001)、慢性阻塞性肺疾病(OR = 1.71;95% CI = 1.46 - 2.01;P<0.001)、充血性心力衰竭(OR = 2.65;95% CI = 1.72 - 4.01;P<0.001)、高血压(OR = 1.35;95% CI = 1.20 - 1.52;P = 0.004)、透析(OR = 3.58;95% CI = 2.01 - 6.39;P = 0.002)、伤口感染(OR = 5.67;95% CI = 3.46 - 9.29;P<0.001)、使用类固醇(OR = 1.43;95% CI = 1.18 - 1.74;P = 0.010)和出血性疾病(OR = 1.84;95% CI = 1.45 - 2.34;P<0.001)。预测非回家出院的增强决策树模型的AUC为0.788,总体准确率为90.3%。预测非回家出院的ANN模型的AUC为0.851,总体准确率为89.9%。对于预测1种或更多术后并发症的发生,增强决策树模型的AUC为0.795,总体准确率为95.5%。ANN模型的AUC为0.788,总体准确率为92.5%。

结论

增强决策树和ANN模型在预测非回家出院方面表现良好,总体准确率相似,但ANN具有更高的判别能力。基于本研究结果,机器学习有潜力准确预测择期TSA后的非回家出院情况。外科医生可使用此类工具来引导患者预期并改善术前出院计划,最终目标是缩短住院时间并提高成本效益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df47/8245980/a87be821a0a8/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验