Computational Genomics Division, National Institute of Genomic Medicine, Mexico City 14610, Mexico.
Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
Genes (Basel). 2019 Oct 30;10(11):865. doi: 10.3390/genes10110865.
Cancer is a complex disease at many different levels. The molecular phenomenology of cancer is also quite rich. The mutational and genomic origins of cancer and their downstream effects on processes such as the reprogramming of the gene regulatory control and the molecular pathways depending on such control have been recognized as central to the characterization of the disease. More important though is the understanding of their causes, prognosis, and therapeutics. There is a multitude of factors associated with anomalous control of gene expression in cancer. Many of these factors are now amenable to be studied comprehensively by means of experiments based on diverse omic technologies. However, characterizing each dimension of the phenomenon individually has proven to fall short in presenting a clear picture of expression regulation as a whole. In this review article, we discuss some of the more relevant factors affecting gene expression control both, under normal conditions and in tumor settings. We describe the different omic approaches that we can use as well as the computational genomic analysis needed to track down these factors. Then we present theoretical and computational frameworks developed to integrate the amount of diverse information provided by such single-omic analyses. We contextualize this within a systems biology-based multi-omic regulation setting, aimed at better understanding the complex interplay of gene expression deregulation in cancer.
癌症在许多不同层面上都是一种复杂的疾病。癌症的分子现象学也相当丰富。癌症的突变和基因组起源及其对基因调控控制的重新编程等过程的下游效应,以及依赖于这种控制的分子途径,已被认为是癌症特征的核心。然而,更重要的是了解其病因、预后和治疗方法。有许多因素与癌症中基因表达的异常控制有关。其中许多因素现在可以通过基于不同组学技术的实验进行全面研究。然而,单独描述现象的每个维度都不足以全面呈现表达调控的清晰图景。在这篇综述文章中,我们讨论了一些在正常情况下和肿瘤环境中影响基因表达控制的更相关因素。我们描述了可以使用的不同组学方法以及跟踪这些因素所需的计算基因组分析。然后,我们提出了一些理论和计算框架,用于整合这些单一组学分析所提供的大量不同信息。我们将其置于基于系统生物学的多组学调控环境中,旨在更好地理解癌症中基因表达失调的复杂相互作用。
Genes (Basel). 2019-10-30
Nephrol Dial Transplant. 2016-12
Expert Rev Proteomics. 2022-3
Nucleic Acids Res. 2018-11-16
Front Biosci (Landmark Ed). 2020-1-1
Mol Cell Proteomics. 2016-8
J Hum Genet. 2021-1
Int J Mol Sci. 2019-9-26
Methods Mol Biol. 2017
Int J Mol Sci. 2024-11-29
Front Aging. 2024-9-18
MedComm (2020). 2024-5-31
Int J Mol Sci. 2024-1-28
Sci Rep. 2023-11-13
Front Oncol. 2023-7-25
Nucleic Acids Res. 2023-2-28
Phys Rep. 2014-11-1
Mol Cell. 2019-9-4
Nat Rev Genet. 2019-7-24
Genes (Basel). 2019-7-22