Suppr超能文献

手语中语言领域的习得年龄效应不同:脑电图证据。

Age of acquisition effects differ across linguistic domains in sign language: EEG evidence.

机构信息

Department of Communicative Disorders, University of Alabama, Speech and Hearing Clinic, 700 Johnny Stallings Drive, Tuscaloosa, AL 35401, USA.

Research Group Neurobiology of Language, Department of Linguistics, University of Salzburg, Erzabt-Klotz-Straße 1, 5020 Salzburg, Austria; Centre for Cognitive Neuroscience (CCNS), University of Salzburg, Erzabt-Klotz-Straße 1, 5020 Salzburg, Austria.

出版信息

Brain Lang. 2020 Jan;200:104708. doi: 10.1016/j.bandl.2019.104708. Epub 2019 Nov 4.

Abstract

One of the key questions in the study of human language acquisition is the extent to which the development of neural processing networks for different components of language are modulated by exposure to linguistic stimuli. Sign languages offer a unique perspective on this issue, because prelingually Deaf children who receive access to complex linguistic input later in life provide a window into brain maturation in the absence of language, and subsequent neuroplasticity of neurolinguistic networks during late language learning. While the duration of sensitive periods of acquisition of linguistic subsystems (sound, vocabulary, and syntactic structure) is well established on the basis of L2 acquisition in spoken language, for sign languages, the relative timelines for development of neural processing networks for linguistic sub-domains are unknown. We examined neural responses of a group of Deaf signers who received access to signed input at varying ages to three linguistic phenomena at the levels of classifier signs, syntactic structure, and information structure. The amplitude of the N400 response to the marked word order condition negatively correlated with the age of acquisition for syntax and information structure, indicating increased cognitive load in these conditions. Additionally, the combination of behavioral and neural data suggested that late learners preferentially relied on classifiers over word order for meaning extraction. This suggests that late acquisition of sign language significantly increases cognitive load during analysis of syntax and information structure, but not word-level meaning.

摘要

人类语言习得研究的一个关键问题是,不同语言成分的神经处理网络的发展在多大程度上受到语言刺激的影响。手语为这个问题提供了一个独特的视角,因为在生命早期失聪的儿童,如果在以后的生活中获得了复杂的语言输入,他们就为大脑在没有语言的情况下成熟以及随后在后期语言学习期间神经语言网络的神经可塑性提供了一个窗口。虽然基于口语第二语言习得,已经确定了语言子系统(声音、词汇和句法结构)的获得的敏感时期的持续时间,但对于手语来说,语言子领域的神经处理网络的发展的相对时间线是未知的。我们研究了一组失聪的手语使用者的神经反应,他们在不同的年龄阶段接触到手语输入,涉及到类符标志、句法结构和信息结构三个语言现象。对有标记词序条件的 N400 反应的振幅与句法和信息结构的习得年龄呈负相关,表明这些条件下的认知负荷增加。此外,行为和神经数据的结合表明,后期学习者优先使用类符而不是词序来提取意义。这表明,手语的后期习得在分析句法和信息结构时会显著增加认知负荷,但不会增加词级意义的认知负荷。

相似文献

4
Neural correlates of semantic and syntactic processing in German Sign Language.德语手语中语义和句法处理的神经关联。
Neuroimage. 2019 Oct 15;200:231-241. doi: 10.1016/j.neuroimage.2019.06.025. Epub 2019 Jun 17.
9
The emergence of the formal category "symmetry" in a new sign language.新手语中正式范畴“对称”的出现。
Proc Natl Acad Sci U S A. 2019 Jun 11;116(24):11705-11711. doi: 10.1073/pnas.1819872116. Epub 2019 May 28.

引用本文的文献

5
Predictive Processing in Sign Languages: A Systematic Review.手语中的预测处理:系统综述
Front Psychol. 2022 Apr 14;13:805792. doi: 10.3389/fpsyg.2022.805792. eCollection 2022.
6
Acquisition of Sign Languages.手语的习得
Annu Rev Linguist. 2021 Jan;7:395-419. doi: 10.1146/annurev-linguistics-043020-092357. Epub 2020 Oct 12.

本文引用的文献

1
Analysis of the visual spatiotemporal properties of American Sign Language.美国手语视觉时空特性分析
Vision Res. 2019 Nov;164:34-43. doi: 10.1016/j.visres.2019.08.008. Epub 2019 Sep 23.
7
Subject preference emerges as cross-modal strategy for linguistic processing.主题偏好作为语言处理的跨模态策略出现。
Brain Res. 2018 Jul 15;1691:105-117. doi: 10.1016/j.brainres.2018.03.029. Epub 2018 Apr 5.
8
Iconicity and Sign Lexical Acquisition: A Review.象似性与符号词汇习得:综述
Front Psychol. 2017 Aug 2;8:1280. doi: 10.3389/fpsyg.2017.01280. eCollection 2017.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验