Suppr超能文献

整合不良结局途径(AOP)和高通量体外检测方法以更好地进行风险评估,以药物性肝损伤(DILI)为例的研究。

Integrating adverse outcome pathways (AOPs) and high throughput in vitro assays for better risk evaluations, a study with drug-induced liver injury (DILI).

机构信息

National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, USA.

出版信息

ALTEX. 2020;37(2):187-196. doi: 10.14573/altex.1908151. Epub 2019 Nov 8.

Abstract

The emergence of high throughput in vitro assays has the potential to significantly improve toxicological evaluations and lead to more efficient, accurate, and less animal-intensive testing. However, directly using all available in vitro assays in a model is usually impractical and inefficient. On the other hand, mechanistic knowledge has always been critical for toxicological evaluations and should not be ignored even with the increasing availability of data. In this paper, we illus­trate a promising approach to integrating mechanistic knowledge with multiple data sources for in vitro assays, using drug-induced liver injury (DILI) as an example. The adverse outcome pathway (AOP) framework was used as a source for mechanistic knowledge and as a selection tool for high throughput predictors. Our results confirm the value of AOPs as a knowledge source for understanding adverse events and show that the majority of drugs classified as most-DILI-concern were mapped to AOPs related to liver toxicity found in AOPwiki. AOPs were also used effectively to select a subset of assays from the Tox21 and L1000 projects as the predictors in predictive modeling of DILI risk. Together with previously published drug properties for daily dose, lipophilicity, and reactive metabolite formation, these assay endpoints were used to build a penalized logistic regression model for assessing DILI risk. This model obtained an accuracy of 0.91, thus confirming the potential power of integrating mechanistic knowledge with high throughput assays for toxicological evalu­ations. The results also provide a roadmap for data integration that could be used for other adverse effects.

摘要

高通量体外检测方法的出现有可能极大地改进毒理学评估,并实现更高效、更准确且动物实验负担更低的检测。然而,直接在模型中使用所有可用的体外检测通常是不切实际且效率低下的。另一方面,即使有越来越多的数据可用,机制知识对于毒理学评估始终至关重要,不应被忽视。在本文中,我们以药物性肝损伤(DILI)为例,说明了一种将机制知识与多个数据源整合用于体外检测的有前途的方法。我们使用了不良结局途径(AOP)框架作为机制知识的来源和高通量预测因子的选择工具。我们的结果证实了 AOP 作为理解不良事件的知识来源的价值,并表明大多数被归类为最关注 DILI 的药物被映射到 AOPwiki 中发现的与肝毒性相关的 AOP。AOP 还被有效地用于从 Tox21 和 L1000 项目中选择一组检测作为 DILI 风险预测的预测模型中的预测因子。结合之前发表的药物特性(每日剂量、亲脂性和反应性代谢物形成),这些检测终点被用于构建用于评估 DILI 风险的惩罚逻辑回归模型。该模型的准确性为 0.91,从而证实了将机制知识与高通量检测整合用于毒理学评估的潜力。该结果还为数据集成提供了路线图,可用于其他不良效应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验