González-Gómez Manuel Antonio, Belderbos Sarah, Yañez-Vilar Susana, Piñeiro Yolanda, Cleeren Frederik, Bormans Guy, Deroose Christophe M, Gsell Willy, Himmelreich Uwe, Rivas José
Applied Physics Department, NANOMAG Laboratory, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
Biomedical MRI, Department of Imaging and Pathology, KU Leuven, O&N I, Herestraat 49-Box 505, 3000 Leuven, Belgium.
Nanomaterials (Basel). 2019 Nov 15;9(11):1626. doi: 10.3390/nano9111626.
Early diagnosis of disease and follow-up of therapy is of vital importance for appropriate patient management since it allows rapid treatment, thereby reducing mortality and improving health and quality of life with lower expenditure for health care systems. New approaches include nanomedicine-based diagnosis combined with therapy. Nanoparticles (NPs), as contrast agents for in vivo diagnosis, have the advantage of combining several imaging agents that are visible using different modalities, thereby achieving high spatial resolution, high sensitivity, high specificity, morphological, and functional information. In this work, we present the development of aluminum hydroxide nanostructures embedded with polyacrylic acid (PAA) coated iron oxide superparamagnetic nanoparticles, FeO@Al(OH), synthesized by a two-step co-precipitation and forced hydrolysis method, their physicochemical characterization and first biomedical studies as dual magnetic resonance imaging (MRI)/positron emission tomography (PET) contrast agents for cell imaging. The so-prepared NPs are size-controlled, with diameters below 250 nm, completely and homogeneously coated with an Al(OH) phase over the magnetite cores, superparamagnetic with high saturation magnetization value (Ms = 63 emu/g-FeO), and porous at the surface with a chemical affinity for fluoride ion adsorption. The suitability as MRI and PET contrast agents was tested showing high transversal relaxivity (r) (83.6 mM s) and rapid uptake of F-labeled fluoride ions as a PET tracer. The loading stability with F-fluoride was tested in longitudinal experiments using water, buffer, and cell culture media. Even though the stability of the F-label varied, it remained stable under all conditions. A first in vivo experiment indicates the suitability of FeO@Al(OH) nanoparticles as a dual contrast agent for sensitive short-term (PET) and high-resolution long-term imaging (MRI).
疾病的早期诊断和治疗随访对于患者的合理管理至关重要,因为它能实现快速治疗,从而降低死亡率,以更低的医疗保健系统支出改善健康状况和生活质量。新方法包括基于纳米医学的诊断与治疗相结合。纳米颗粒(NPs)作为体内诊断的造影剂,具有将几种可通过不同模态观察到的成像剂结合起来的优势,从而实现高空间分辨率、高灵敏度、高特异性、形态学和功能信息。在这项工作中,我们展示了通过两步共沉淀和强制水解法合成的嵌入聚丙烯酸(PAA)包覆的氧化铁超顺磁性纳米颗粒的氢氧化铝纳米结构FeO@Al(OH)的开发,其物理化学表征以及作为用于细胞成像的双磁共振成像(MRI)/正电子发射断层扫描(PET)造影剂的首次生物医学研究。如此制备的纳米颗粒尺寸可控,直径低于250 nm,在磁铁矿核心上完全且均匀地包覆有Al(OH)相,具有高饱和磁化值(Ms = 63 emu/g-FeO)的超顺磁性,并且表面多孔,对氟离子吸附具有化学亲和力。测试了其作为MRI和PET造影剂的适用性,显示出高横向弛豫率(r)(83.6 mM s)以及作为PET示踪剂的F标记氟离子的快速摄取。在使用水、缓冲液和细胞培养基的纵向实验中测试了F - 氟化物的负载稳定性。尽管F标记的稳定性有所不同,但在所有条件下它都保持稳定。首次体内实验表明FeO@Al(OH)纳米颗粒作为用于敏感短期(PET)和高分辨率长期成像(MRI)的双造影剂的适用性。