Suppr超能文献

根际微生物组研究中的简化综合群落方法。

Reductionist synthetic community approaches in root microbiome research.

机构信息

State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (CAS), Beijing 100101, China.

State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (CAS), Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Curr Opin Microbiol. 2019 Jun;49:97-102. doi: 10.1016/j.mib.2019.10.010. Epub 2019 Nov 14.

Abstract

Synthetic community (SynCom) approaches can provide functional and mechanistic insights into how plants regulate their microbiomes, and how the microbiome in turn influences plant growth and health. Microbial cultivation and reconstruction play pivotal roles in this process, which enables researchers to reproducibly investigate the interactions between plants and a major proportion of plant-associated microbes in controlled laboratory conditions. Here, we summarize the emergence, current achievements, and future opportunities for using SynCom experiments in plant microbiome research, with a focus on plant root-associated bacteria.

摘要

人工合成群落(SynCom)方法可以为植物如何调节其微生物组以及微生物组反过来如何影响植物生长和健康提供功能和机制方面的见解。在这个过程中,微生物的培养和重建起着关键作用,使研究人员能够在受控的实验室条件下可重复地研究植物与主要部分植物相关微生物之间的相互作用。在这里,我们总结了使用 SynCom 实验进行植物微生物组研究的出现、当前成就和未来机遇,重点关注植物根相关细菌。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验