Peking University Sixth Hospital, Beijing, China.
Peking University Institute of Mental Health, Beijing, China.
Transl Psychiatry. 2019 Nov 18;9(1):305. doi: 10.1038/s41398-019-0638-8.
Bipolar disorder (BPD) is often confused with major depression, and current diagnostic questionnaires are subjective and time intensive. The aim of this study was to develop a new Bipolar Diagnosis Checklist in Chinese (BDCC) by using machine learning to shorten the Affective Disorder Evaluation scale (ADE) based on an analysis of registered Chinese multisite cohort data. In order to evaluate the importance of each item of the ADE, a case-control study of 360 bipolar disorder (BPD) patients, 255 major depressive disorder (MDD) patients and 228 healthy (no psychiatric diagnosis) controls (HCs) was conducted, spanning 9 Chinese health facilities participating in the Comprehensive Assessment and Follow-up Descriptive Study on Bipolar Disorder (CAFÉ-BD). The BDCC was formed by selected items from the ADE according to their importance as calculated by a random forest machine learning algorithm. Five classical machine learning algorithms, namely, a random forest algorithm, support vector regression (SVR), the least absolute shrinkage and selection operator (LASSO), linear discriminant analysis (LDA) and logistic regression, were used to retrospectively analyze the aforementioned cohort data to shorten the ADE. Regarding the area under the receiver operating characteristic (ROC) curve (AUC), the BDCC had high AUCs of 0.948, 0.921, and 0.923 for the diagnosis of MDD, BPD, and HC, respectively, despite containing only 15% (17/113) of the items from the ADE. Traditional scales can be shortened using machine learning analysis. By shortening the ADE using a random forest algorithm, we generated the BDCC, which can be more easily applied in clinical practice to effectively enhance both BPD and MDD diagnosis.
双相情感障碍(BPD)常与重性抑郁障碍混淆,目前的诊断问卷既主观又费时。本研究旨在通过使用机器学习,基于对中国多中心注册队列数据的分析,将基于 Affective Disorder Evaluation Scale(ADE)的新的中文双相诊断检查表(BDCC)。为了评估 ADE 各项目的重要性,我们对来自 9 家中国医疗机构参加的全面评估和随访描述性研究双相障碍(CAFÉ-BD)的 360 名双相障碍(BPD)患者、255 名重性抑郁障碍(MDD)患者和 228 名健康(无精神科诊断)对照(HCs)进行了病例对照研究。BDCC 根据随机森林机器学习算法计算的重要性,从 ADE 中选择项目组成。使用五种经典机器学习算法,即随机森林算法、支持向量回归(SVR)、最小绝对收缩和选择算子(LASSO)、线性判别分析(LDA)和逻辑回归,对上述队列数据进行回顾性分析,以缩短 ADE。就受试者工作特征(ROC)曲线下面积(AUC)而言,BDCC 对 MDD、BPD 和 HC 的诊断 AUC 分别为 0.948、0.921 和 0.923,尽管仅包含 ADE 项目的 15%(17/113)。可以使用机器学习分析来缩短传统量表。通过使用随机森林算法缩短 ADE,我们生成了 BDCC,可以更轻松地在临床实践中应用,有效提高 BPD 和 MDD 的诊断率。