Suppr超能文献

基于纳米技术的生物材料在骨科应用中的研究进展及未来展望

Nanotechnology-based biomaterials for orthopaedic applications: Recent advances and future prospects.

机构信息

Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India.

Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India.

出版信息

Mater Sci Eng C Mater Biol Appl. 2020 Jan;106:110154. doi: 10.1016/j.msec.2019.110154. Epub 2019 Sep 2.

Abstract

Bioimplant engineering aims to mature biological alternatives to restore, retain, or modify damaged tissues and/or the functionality of organs. Remarkable advancements in modern material technology have helped the diversity of materials for orthopaedic implant application. As such, nanomaterials can simulate the surface properties of natural tissues, especially with respect to surface topography, surface chemistry, surface energy, and surface wettability. The novel properties of nanomaterials also encourage their use for improving the growth of different tissues. The present review lays the foundation for nanotechnology-driven biomaterials through revelation of fundamental design considerations to determine the performance of an orthopaedic implant in terms of success or failure, their antimicrobial/antibacterial activities, and response to cell adhesion, proliferation, and differentiation. In this context, the nano-functionalization of biomaterial surface has been widely investigated to improve cell adhesion, proliferation, differentiation, and migration for implants with high antimicrobial activity. The potential use of nanomaterials (in terms of nanostructured surface or functional nanocoating over implant surface) can resolve several issues (e.g., corrosion resistance and bacterial adhesion) pertaining to conventional metallic or non-metallic implants, especially for optimization of implant techniques. The future trends of orthopaedic biomaterials (e.g., porous structures, smart biomaterials, and 3D implants) are promising to achieve the desired properties and structure of an implant with stimuli-responsive behaviour. The major challenges in commercialization of nanotechnology-derived biomaterials are finally addressed to help overcome the limitations of pre-existing orthopaedic biomaterials in terms of key variables, e.g., quality, treatment cost, implant life, and pain relief.

摘要

生物植入工程旨在成熟的生物替代物来恢复、保留或修改受损组织和/或器官的功能。现代材料技术的显著进步帮助了骨科植入应用材料的多样性。因此,纳米材料可以模拟天然组织的表面特性,特别是在表面形貌、表面化学、表面能和表面润湿性方面。纳米材料的新颖特性也鼓励它们用于促进不同组织的生长。本综述通过揭示基本设计考虑因素,为基于纳米技术的生物材料奠定了基础,以确定骨科植入物在成功或失败、其抗菌/杀菌活性以及对细胞黏附、增殖和分化的反应方面的性能。在这方面,广泛研究了生物材料表面的纳米功能化,以提高具有高抗菌活性的植入物的细胞黏附、增殖、分化和迁移。纳米材料的潜在用途(例如,植入物表面的纳米结构表面或功能纳米涂层)可以解决与传统金属或非金属植入物相关的几个问题(例如,耐腐蚀性和细菌黏附),特别是优化植入技术。骨科生物材料的未来趋势(例如,多孔结构、智能生物材料和 3D 植入物)有望实现具有刺激响应行为的植入物的理想特性和结构。最后讨论了纳米技术衍生生物材料商业化的主要挑战,以帮助克服现有骨科生物材料在质量、治疗成本、植入物寿命和减轻疼痛等关键变量方面的局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验