文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Deep spectral learning for label-free optical imaging oximetry with uncertainty quantification.

作者信息

Liu Rongrong, Cheng Shiyi, Tian Lei, Yi Ji

机构信息

1Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208 USA.

2Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215 USA.

出版信息

Light Sci Appl. 2019 Nov 20;8:102. doi: 10.1038/s41377-019-0216-0. eCollection 2019.


DOI:10.1038/s41377-019-0216-0
PMID:31754429
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6864044/
Abstract

Measurement of blood oxygen saturation (O) by optical imaging oximetry provides invaluable insight into local tissue functions and metabolism. Despite different embodiments and modalities, all label-free optical-imaging oximetry techniques utilize the same principle of O-dependent spectral contrast from haemoglobin. Traditional approaches for quantifying O often rely on analytical models that are fitted by the spectral measurements. These approaches in practice suffer from uncertainties due to biological variability, tissue geometry, light scattering, systemic spectral bias, and variations in the experimental conditions. Here, we propose a new data-driven approach, termed deep spectral learning (DSL), to achieve oximetry that is highly robust to experimental variations and, more importantly, able to provide uncertainty quantification for each O prediction. To demonstrate the robustness and generalizability of DSL, we analyse data from two visible light optical coherence tomography (vis-OCT) setups across two separate in vivo experiments on rat retinas. Predictions made by DSL are highly adaptive to experimental variabilities as well as the depth-dependent backscattering spectra. Two neural-network-based models are tested and compared with the traditional least-squares fitting (LSF) method. The DSL-predicted O shows significantly lower mean-square errors than those of the LSF. For the first time, we have demonstrated maps of retinal oximetry along with a pixel-wise confidence assessment. Our DSL overcomes several limitations of traditional approaches and provides a more flexible, robust, and reliable deep learning approach for in vivo non-invasive label-free optical oximetry.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acf8/6864044/726bd9092cce/41377_2019_216_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acf8/6864044/956285e3eacd/41377_2019_216_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acf8/6864044/e2ccc9a6d30d/41377_2019_216_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acf8/6864044/1163cd978854/41377_2019_216_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acf8/6864044/0944103d6a88/41377_2019_216_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acf8/6864044/78287be355b0/41377_2019_216_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acf8/6864044/3018497b06a4/41377_2019_216_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acf8/6864044/1b25026db6d0/41377_2019_216_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acf8/6864044/726bd9092cce/41377_2019_216_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acf8/6864044/956285e3eacd/41377_2019_216_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acf8/6864044/e2ccc9a6d30d/41377_2019_216_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acf8/6864044/1163cd978854/41377_2019_216_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acf8/6864044/0944103d6a88/41377_2019_216_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acf8/6864044/78287be355b0/41377_2019_216_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acf8/6864044/3018497b06a4/41377_2019_216_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acf8/6864044/1b25026db6d0/41377_2019_216_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acf8/6864044/726bd9092cce/41377_2019_216_Fig8_HTML.jpg

相似文献

[1]
Deep spectral learning for label-free optical imaging oximetry with uncertainty quantification.

Light Sci Appl. 2019-11-20

[2]
Adaptive spectroscopic visible-light optical coherence tomography for clinical retinal oximetry.

Commun Med (Lond). 2023-4-24

[3]
Retinal oximetry in humans using visible-light optical coherence tomography [Invited].

Biomed Opt Express. 2017-2-7

[4]
Macular Oxygen Saturation in Glaucoma Using Retinal Oximetry of Visible Light Optical Coherence Tomography.

medRxiv. 2023-12-22

[5]
Quantitative quality-control metrics for oximetry in small vessels by visible light optical coherence tomography angiography.

Biomed Opt Express. 2019-1-8

[6]
Monte Carlo Investigation of Optical Coherence Tomography Retinal Oximetry.

IEEE Trans Biomed Eng. 2015-9

[7]
Measuring oxygen saturation in retinal and choroidal circulations in rats using visible light optical coherence tomography angiography.

Biomed Opt Express. 2015-7-10

[8]
Theoretical model for optical oximetry at the capillary level: exploring hemoglobin oxygen saturation through backscattering of single red blood cells.

J Biomed Opt. 2017-2-1

[9]
Reliability assessment for blood oxygen saturation levels measured with optoacoustic imaging.

J Biomed Opt. 2020-4

[10]
Visible-light optical coherence tomography oximetry based on circumpapillary scan and graph-search segmentation.

Biomed Opt Express. 2018-7-10

引用本文的文献

[1]
Retinal oximetry: new insights into ocular and systemic diseases.

Graefes Arch Clin Exp Ophthalmol. 2025-4-21

[2]
Visible-light optical coherence tomography and its applications.

Neurophotonics. 2025-4

[3]
Enhanced multiscale human brain imaging by semi-supervised digital staining and serial sectioning optical coherence tomography.

Light Sci Appl. 2025-1-20

[4]
Quantitative Optical Imaging of Oxygen in Brain Vasculature.

J Phys Chem B. 2024-7-25

[5]
Enhanced Multiscale Human Brain Imaging by Semi-supervised Digital Staining and Serial Sectioning Optical Coherence Tomography.

Res Sq. 2024-3-21

[6]
Exploring uncertainty measures in convolutional neural network for semantic segmentation of oral cancer images.

J Biomed Opt. 2022-11

[7]
Optical oxygen saturation imaging in cellular ex vivo lung perfusion to assess lobular pulmonary function.

Biomed Opt Express. 2021-12-14

[8]
Live-dead assay on unlabeled cells using phase imaging with computational specificity.

Nat Commun. 2022-2-7

[9]
Bayesian deep learning for reliable oral cancer image classification.

Biomed Opt Express. 2021-9-20

[10]
Deep Learning in Biomedical Optics.

Lasers Surg Med. 2021-8

本文引用的文献

[1]
Reliable deep-learning-based phase imaging with uncertainty quantification.

Optica. 2019-5

[2]
Monitoring retinal responses to acute intraocular pressure elevation in rats with visible light optical coherence tomography.

Neurophotonics. 2019-10

[3]
Longitudinal detection of retinal alterations by visible and near-infrared optical coherence tomography in a dexamethasone-induced ocular hypertension mouse model.

Neurophotonics. 2019-10

[4]
Improving visible light OCT of the human retina with rapid spectral shaping and axial tracking.

Biomed Opt Express. 2019-5-21

[5]
Single capillary oximetry and tissue ultrastructural sensing by dual-band dual-scan inverse spectroscopic optical coherence tomography.

Light Sci Appl. 2018-8-29

[6]
Quantitative quality-control metrics for oximetry in small vessels by visible light optical coherence tomography angiography.

Biomed Opt Express. 2019-1-8

[7]
Two-photon phosphorescence lifetime microscopy of retinal capillary plexus oxygenation in mice.

J Biomed Opt. 2018-12

[8]
Content-aware image restoration: pushing the limits of fluorescence microscopy.

Nat Methods. 2018-11-26

[9]
Rodent retinal circulation organization and oxygen metabolism revealed by visible-light optical coherence tomography.

Biomed Opt Express. 2018-10-30

[10]
A flexible organic reflectance oximeter array.

Proc Natl Acad Sci U S A. 2018-11-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索