文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

探索卷积神经网络中用于口腔癌图像语义分割的不确定性度量。

Exploring uncertainty measures in convolutional neural network for semantic segmentation of oral cancer images.

机构信息

Wyant College of Optical Sciences, United States.

Mazumdar Shaw Cancer Ctr., India.

出版信息

J Biomed Opt. 2022 Nov;27(11). doi: 10.1117/1.JBO.27.11.115001.


DOI:10.1117/1.JBO.27.11.115001
PMID:36329004
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9630461/
Abstract

SIGNIFICANCE: Oral cancer is one of the most prevalent cancers, especially in middle- and low-income countries such as India. Automatic segmentation of oral cancer images can improve the diagnostic workflow, which is a significant task in oral cancer image analysis. Despite the remarkable success of deep-learning networks in medical segmentation, they rarely provide uncertainty quantification for their output. AIM: We aim to estimate uncertainty in a deep-learning approach to semantic segmentation of oral cancer images and to improve the accuracy and reliability of predictions. APPROACH: This work introduced a UNet-based Bayesian deep-learning (BDL) model to segment potentially malignant and malignant lesion areas in the oral cavity. The model can quantify uncertainty in predictions. We also developed an efficient model that increased the inference speed, which is almost six times smaller and two times faster (inference speed) than the original UNet. The dataset in this study was collected using our customized screening platform and was annotated by oral oncology specialists. RESULTS: The proposed approach achieved good segmentation performance as well as good uncertainty estimation performance. In the experiments, we observed an improvement in pixel accuracy and mean intersection over union by removing uncertain pixels. This result reflects that the model provided less accurate predictions in uncertain areas that may need more attention and further inspection. The experiments also showed that with some performance compromises, the efficient model reduced computation time and model size, which expands the potential for implementation on portable devices used in resource-limited settings. CONCLUSIONS: Our study demonstrates the UNet-based BDL model not only can perform potentially malignant and malignant oral lesion segmentation, but also can provide informative pixel-level uncertainty estimation. With this extra uncertainty information, the accuracy and reliability of the model’s prediction can be improved.

摘要

意义:口腔癌是最常见的癌症之一,尤其是在印度等中低收入国家。口腔癌图像的自动分割可以改善诊断工作流程,这是口腔癌图像分析中的一项重要任务。尽管深度学习网络在医学分割方面取得了显著的成功,但它们很少为其输出提供不确定性量化。

目的:我们旨在估计深度学习方法对口腔癌图像语义分割的不确定性,并提高预测的准确性和可靠性。

方法:这项工作引入了一种基于 U-Net 的贝叶斯深度学习(BDL)模型,用于分割口腔中可能恶性和恶性病变区域。该模型可以量化预测中的不确定性。我们还开发了一种高效的模型,提高了推理速度,比原始的 U-Net 小近六倍,快两倍(推理速度)。本研究中的数据集是使用我们定制的筛查平台收集的,并由口腔肿瘤专家进行注释。

结果:所提出的方法实现了良好的分割性能和良好的不确定性估计性能。在实验中,我们观察到通过去除不确定像素,像素准确率和平均交并率有所提高。这一结果反映出,在不确定区域,模型提供的预测可能不太准确,需要更多关注和进一步检查。实验还表明,在某些性能折衷的情况下,高效模型减少了计算时间和模型大小,这扩大了在资源有限的环境中使用便携式设备实现的潜力。

结论:我们的研究表明,基于 U-Net 的 BDL 模型不仅可以进行可能恶性和恶性口腔病变的分割,还可以提供有用的像素级不确定性估计。通过这种额外的不确定性信息,可以提高模型预测的准确性和可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8646/9630461/c3cd65c190ca/JBO-027-115001-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8646/9630461/20030e4ff81f/JBO-027-115001-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8646/9630461/10be63e8e168/JBO-027-115001-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8646/9630461/10e28b8c7971/JBO-027-115001-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8646/9630461/c01ed75eac0d/JBO-027-115001-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8646/9630461/01d9ad28c22a/JBO-027-115001-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8646/9630461/fa19145b2680/JBO-027-115001-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8646/9630461/c3cd65c190ca/JBO-027-115001-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8646/9630461/20030e4ff81f/JBO-027-115001-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8646/9630461/10be63e8e168/JBO-027-115001-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8646/9630461/10e28b8c7971/JBO-027-115001-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8646/9630461/c01ed75eac0d/JBO-027-115001-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8646/9630461/01d9ad28c22a/JBO-027-115001-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8646/9630461/fa19145b2680/JBO-027-115001-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8646/9630461/c3cd65c190ca/JBO-027-115001-g007.jpg

相似文献

[1]
Exploring uncertainty measures in convolutional neural network for semantic segmentation of oral cancer images.

J Biomed Opt. 2022-11

[2]
Nuclei instance segmentation from histopathology images using Bayesian dropout based deep learning.

BMC Med Imaging. 2023-10-19

[3]
Uncertainty quantification in multi-class segmentation: Comparison between Bayesian and non-Bayesian approaches in a clinical perspective.

Med Phys. 2024-9

[4]
Leveraging voxel-wise segmentation uncertainty to improve reliability in assessment of paediatric dysplasia of the hip.

Int J Comput Assist Radiol Surg. 2021-7

[5]
Uncertainty and interpretability in convolutional neural networks for semantic segmentation of colorectal polyps.

Med Image Anal. 2020-2

[6]
Uncertainty estimation for deep learning-based pectoral muscle segmentation via Monte Carlo dropout.

Phys Med Biol. 2023-5-22

[7]
Uncertainty quantification in skin cancer classification using three-way decision-based Bayesian deep learning.

Comput Biol Med. 2021-8

[8]
A Lightweight Semantic Segmentation Algorithm Based on Deep Convolutional Neural Networks.

Comput Intell Neurosci. 2022

[9]
Efficient skin lesion segmentation using separable-Unet with stochastic weight averaging.

Comput Methods Programs Biomed. 2019-7-8

[10]
Segmentation of trabecular bone microdamage in Xray microCT images using a two-step deep learning method.

J Mech Behav Biomed Mater. 2023-1

引用本文的文献

[1]
CLASEG: advanced multiclassification and segmentation for differential diagnosis of oral lesions using deep learning.

Sci Rep. 2025-7-2

[2]
Artificial intelligence and the diagnosis of oral cavity cancer and oral potentially malignant disorders from clinical photographs: a narrative review.

Front Oral Health. 2025-3-10

[3]
Mapping the Use of Artificial Intelligence-Based Image Analysis for Clinical Decision-Making in Dentistry: A Scoping Review.

Clin Exp Dent Res. 2024-12

[4]
[Diagnosis of nasopharyngeal carcinoma with convolutional neural network on narrowband imaging].

Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2023-6

本文引用的文献

[1]
Bayesian deep learning for reliable oral cancer image classification.

Biomed Opt Express. 2021-9-20

[2]
A deep learning-based framework for segmenting invisible clinical target volumes with estimated uncertainties for post-operative prostate cancer radiotherapy.

Med Image Anal. 2021-8

[3]
Uncertainty quantification in skin cancer classification using three-way decision-based Bayesian deep learning.

Comput Biol Med. 2021-8

[4]
Exploring Uncertainty Measures in Bayesian Deep Attentive Neural Networks for Prostate Zonal Segmentation.

IEEE Access. 2020

[5]
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.

CA Cancer J Clin. 2021-5

[6]
Interpretable deep learning systems for multi-class segmentation and classification of non-melanoma skin cancer.

Med Image Anal. 2021-2

[7]
Global patterns and trends in cancers of the lip, tongue and mouth.

Oral Oncol. 2020-3

[8]
Deep spectral learning for label-free optical imaging oximetry with uncertainty quantification.

Light Sci Appl. 2019-11-20

[9]
Small form factor, flexible, dual-modality handheld probe for smartphone-based, point-of-care oral and oropharyngeal cancer screening.

J Biomed Opt. 2019-10

[10]
ARA: accurate, reliable and active histopathological image classification framework with Bayesian deep learning.

Sci Rep. 2019-10-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索