Yu Mingquan, Waag Friedrich, Chan Candace K, Weidenthaler Claudia, Barcikowski Stephan, Tüysüz Harun
Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany.
Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg, 47057, Germany.
ChemSusChem. 2020 Feb 7;13(3):520-528. doi: 10.1002/cssc.201903186. Epub 2019 Dec 30.
Sub-5 nm cobalt oxide nanoparticles are produced in a flowing water system by pulsed laser fragmentation in liquid (PLFL). Particle fragmentation from 8 nm to 4 nm occurs and is attributed to the oxidation process in water where oxidative species are present and the local temperature is rapidly elevated under laser irradiation. Significantly higher surface area, crystal phase transformation, and formation of structural defects (Co defects and oxygen vacancies) through the PLFL process are evidenced by detailed structural characterizations by nitrogen physisorption, electron microscopy, synchrotron X-ray diffraction, and X-ray photoelectron spectroscopy. When employed as electrocatalysts for the oxygen evolution reaction under alkaline conditions, the fragmented cobalt oxides exhibit superior catalytic activity over pristine and nanocast cobalt oxides, delivering a current density of 10 mA cm at 369 mV and a Tafel slope of 46 mV dec , which is attributed to a larger exposed active surface area, the formation of defects, and an increased charge transfer rate. The study provides an effective approach to engineering cobalt oxide nanostructures in a flowing water system, which shows great potential for sustainable production of active cobalt catalysts.
通过液体中的脉冲激光破碎(PLFL)在流动水系统中制备出亚5纳米的氧化钴纳米颗粒。颗粒从8纳米破碎至4纳米,这归因于水中存在氧化性物质且在激光照射下局部温度迅速升高的氧化过程。通过氮气物理吸附、电子显微镜、同步加速器X射线衍射和X射线光电子能谱进行的详细结构表征证明,通过PLFL过程显著提高了表面积、发生了晶相转变并形成了结构缺陷(钴缺陷和氧空位)。当用作碱性条件下析氧反应的电催化剂时,破碎后的氧化钴比原始和纳米铸造的氧化钴表现出更优异的催化活性,在369毫伏时的电流密度为10毫安/平方厘米,塔菲尔斜率为46毫伏/十倍电流变化,这归因于更大的暴露活性表面积、缺陷的形成以及电荷转移速率的增加。该研究提供了一种在流动水系统中设计氧化钴纳米结构的有效方法,这显示出可持续生产活性钴催化剂的巨大潜力。