Girão Hugo, Okada Naoyuki, Rodrigues Tony A, Silva Alexandra O, Figueiredo Ana C, Garcia Zaira, Moutinho-Santos Tatiana, Hayashi Ikuko, Azevedo Jorge E, Macedo-Ribeiro Sandra, Maiato Helder
Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.
J Cell Biol. 2020 Feb 3;219(2). doi: 10.1083/jcb.201905080.
CLASPs are conserved microtubule plus-end-tracking proteins that suppress microtubule catastrophes and independently localize to kinetochores during mitosis. Thus, CLASPs are ideally positioned to regulate kinetochore-microtubule dynamics required for chromosome segregation fidelity, but the underlying mechanism remains unknown. Here, we found that human CLASP2 exists predominantly as a monomer in solution, but it can self-associate through its C-terminal kinetochore-binding domain. Kinetochore localization was independent of self-association, and driving monomeric CLASP2 to kinetochores fully rescued normal kinetochore-microtubule dynamics, while partially sustaining mitosis. CLASP2 kinetochore localization, recognition of growing microtubule plus-ends through EB-protein interaction, and the ability to associate with curved microtubule protofilaments through TOG2 and TOG3 domains independently sustained normal spindle length, timely spindle assembly checkpoint satisfaction, chromosome congression, and faithful segregation. Measurements of kinetochore-microtubule half-life and poleward flux revealed that CLASP2 regulates kinetochore-microtubule dynamics by integrating distinctive microtubule-binding properties at the kinetochore-microtubule interface. We propose that kinetochore CLASP2 suppresses microtubule depolymerization and detachment by binding to curved protofilaments at microtubule plus-ends.
CLASPs是保守的微管正端追踪蛋白,可抑制微管灾变,并在有丝分裂期间独立定位于动粒。因此,CLASPs处于理想位置来调节染色体分离保真度所需的动粒-微管动力学,但其潜在机制仍不清楚。在这里,我们发现人CLASP2在溶液中主要以单体形式存在,但它可以通过其C端动粒结合结构域进行自我缔合。动粒定位与自我缔合无关,将单体CLASP2驱动至动粒可完全挽救正常的动粒-微管动力学,同时部分维持有丝分裂。CLASP2的动粒定位、通过EB蛋白相互作用识别生长中的微管正端以及通过TOG2和TOG3结构域与弯曲的微管原纤维缔合的能力,独立维持了正常的纺锤体长度、及时满足纺锤体组装检查点、染色体汇聚和忠实分离。对动粒-微管半衰期和向极流的测量表明,CLASP2通过整合动粒-微管界面独特的微管结合特性来调节动粒-微管动力学。我们提出,动粒CLASP2通过结合微管正端的弯曲原纤维来抑制微管解聚和脱离。