College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
Environ Microbiol. 2020 Feb;22(2):598-614. doi: 10.1111/1462-2920.14874. Epub 2019 Dec 4.
Microtubule is a well-known structural protein participating in cell division, motility and vesicle traffic. In this study, we found that β -tubulin, one of the microtubule components, plays an important role in regulating secondary metabolite deoxynivalenol (DON) biosynthesis in Fusarium graminearum by interacting with isocitrate dehydrogenase subunit 3 (IDH3). We found IDH3 negatively regulate DON biosynthesis by reducing acetyl-CoA accumulation in F. graminearum and DON biosynthesis was stimulated by exogenous acetyl-CoA. In addition, the expression of IDH3 significantly decreased in the carbendazim-resistant mutant nt167 (Fgβ ). Furthermore, we found that carbendazim-resistance associated β -tubulin substitutions reducing the interaction intensity between β -tubulin and IDH3. Interestingly, we demonstrated that β -tubulin inhibitor carbendazim can disrupt the interaction between β -tubulin and IDH3. The decreased interaction intensity between β -tubulin and IDH3 resulted in the decreased expression of IDH3, which can cause the accumulation of acetyl-CoA, precursor of DON biosynthesis in F. graminearum. Thus, we revealed that carbendazim-resistance associated β -tubulin substitutions or carbendazim treatment increases DON biosynthesis by reducing the interaction between β -tubulin and IDH3 in F. graminearum. Taken together, the novel findings give the new perspectives of β -tubulin in regulating secondary metabolism in phytopathogenic fungi.
微管是一种参与细胞分裂、运动和囊泡运输的已知结构蛋白。在这项研究中,我们发现微管的组成部分之一β-微管蛋白通过与异柠檬酸脱氢酶亚基 3(IDH3)相互作用,在调控禾谷镰刀菌次生代谢物脱氧雪腐镰刀菌烯醇(DON)生物合成中发挥重要作用。我们发现 IDH3 通过减少乙酰辅酶 A 在禾谷镰刀菌中的积累来负调控 DON 生物合成,并且外源乙酰辅酶 A 可以刺激 DON 生物合成。此外,在苯并咪唑抗性突变体 nt167(Fgβ)中 IDH3 的表达显著降低。此外,我们发现与苯并咪唑抗性相关的β-微管蛋白取代降低了β-微管蛋白与 IDH3 之间的相互作用强度。有趣的是,我们证明了β-微管蛋白抑制剂苯并咪唑可以破坏β-微管蛋白与 IDH3 之间的相互作用。β-微管蛋白与 IDH3 之间相互作用强度的降低导致 IDH3 的表达降低,从而导致乙酰辅酶 A(DON 生物合成的前体)在禾谷镰刀菌中的积累。因此,我们揭示了与苯并咪唑抗性相关的β-微管蛋白取代或苯并咪唑处理通过降低β-微管蛋白与 IDH3 之间的相互作用,从而增加 DON 生物合成。总之,这些新发现为β-微管蛋白在调控植物病原真菌次生代谢中的作用提供了新的视角。