College of Plant Protection, Nanjing Agricultural University, Nanjing, China.
Mol Plant Pathol. 2022 Apr;23(4):489-502. doi: 10.1111/mpp.13173. Epub 2021 Dec 17.
Fusarium graminearum, as the causal agent of Fusarium head blight (FHB), not only causes yield loss, but also contaminates the quality of wheat by producing mycotoxins, such as deoxynivalenol (DON). The plasma membrane H -ATPases play important roles in many growth stages in plants and yeasts, but their functions and regulation in phytopathogenic fungi remain largely unknown. Here we characterized two plasma membrane H -ATPases: FgPMA1 and FgPMA2 in F. graminearum. The FgPMA1 deletion mutant (∆FgPMA1), but not FgPMA2 deletion mutant (∆FgPMA2), was impaired in vegetative growth, pathogenicity, and sexual and asexual development. FgPMA1 was localized to the plasma membrane, and ∆FgPMA1 displayed reduced integrity of plasma membrane. ∆FgPMA1 not only impaired the formation of the toxisome, which is a compartment where DON is produced, but also suppressed the expression level of DON biosynthetic enzymes, decreased DON production, and decreased the amount of mycelial invasion, leading to impaired pathogenicity by exclusively developing disease on inoculation sites of wheat ears and coleoptiles. ∆FgPMA1 exhibited decreased sensitivity to some osmotic stresses, a cell wall-damaging agent (Congo red), a cell membrane-damaging agent (sodium dodecyl sulphate), and heat shock stress. FgMyo-5 is the target of phenamacril used for controlling FHB. We found FgPMA1 interacted with FgMyo-5, and ∆FgPMA1 showed an increased expression level of FgMyo-5, resulting in increased sensitivity to phenamacril, but not to other fungicides. Furthermore, co-immunoprecipitation confirmed that FgPMA1, FgMyo-5, and FgBmh2 (a 14-3-3 protein) form a complex to regulate the sensitivity to phenamacril and biological functions. Collectively, this study identified a novel regulating mechanism of FgPMA1 in pathogenicity and phenamacril sensitivity of F. graminearum.
镰刀菌禾谷孢,作为赤霉病(FHB)的病原体,不仅会导致产量损失,还会通过产生脱氧雪腐镰刀菌烯醇(DON)等真菌毒素污染小麦质量。质膜 H+-ATP 酶在植物和酵母的许多生长阶段都发挥着重要作用,但它们在植物病原真菌中的功能和调控机制在很大程度上仍是未知的。在这里,我们对镰刀菌禾谷孢中的两个质膜 H+-ATP 酶:FgPMA1 和 FgPMA2 进行了特征描述。FgPMA1 缺失突变体(∆FgPMA1),而不是 FgPMA2 缺失突变体(∆FgPMA2),在营养生长、致病性以及有性和无性发育方面都受到了损害。FgPMA1 定位于质膜,∆FgPMA1 显示质膜完整性降低。∆FgPMA1 不仅损害了 DON 产生的毒素体的形成,还抑制了 DON 生物合成酶的表达水平,降低了 DON 的产生,并减少了菌丝的入侵量,导致在接种小麦穗和胚芽鞘部位时仅发展出病害,从而使致病性受损。∆FgPMA1 对一些渗透胁迫、细胞壁损伤剂(刚果红)、细胞膜损伤剂(十二烷基硫酸钠)和热休克应激的敏感性降低。Myo-5 是用于控制赤霉病的 phenamacril 的靶标。我们发现 FgPMA1 与 FgMyo-5 相互作用,∆FgPMA1 表现出 FgMyo-5 的表达水平增加,导致对 phenamacril 的敏感性增加,但对其他杀真菌剂没有影响。此外,共免疫沉淀证实 FgPMA1、FgMyo-5 和 FgBmh2(一种 14-3-3 蛋白)形成复合物,以调节对 phenamacril 的敏感性和生物学功能。总之,本研究鉴定了一个调控 F. graminearum 致病性和对 phenamacril 敏感性的 FgPMA1 新调节机制。