School of Mathematics and Statistics, Xidian University, Xi'an, 710071, China.
Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
J Math Biol. 2020 Mar;80(4):1095-1117. doi: 10.1007/s00285-019-01452-2. Epub 2019 Nov 25.
Much work has focused on the basic reproduction ratio [Formula: see text] for a variety of compartmental population models, but the theory of [Formula: see text] remains unsolved for periodic and time-delayed impulsive models. In this paper, we develop the theory of [Formula: see text] for a class of such impulsive models. We first introduce [Formula: see text] and show that it is a threshold parameter for the stability of the zero solution of an associated linear system. Then we apply this theory to a time-delayed computer virus model with impulse treatment and obtain a threshold result on its global dynamics in terms of [Formula: see text]. Numerically, it is found that the basic reproduction ratio of the time-averaged delayed impulsive system may overestimate the spread risk of the virus.
许多工作都集中在各种房室人群模型的基本繁殖数[公式:见正文]上,但[公式:见正文]的理论对于周期性和时滞脉冲模型仍然没有得到解决。在本文中,我们为一类这样的脉冲模型发展了[公式:见正文]的理论。我们首先引入[公式:见正文],并证明它是一个相关线性系统的零解稳定性的阈值参数。然后,我们将该理论应用于具有脉冲治疗的时滞计算机病毒模型,并以[公式:见正文]为条件得到其全局动力学的阈值结果。数值上发现,时滞脉冲系统的平均时滞基本繁殖数可能高估了病毒的传播风险。