Department of Mathematics, FNSPE, Czech Technical University in Prague, Prague, Czech Republic.
Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, United Kingdom.
Phys Rev E. 2019 Oct;100(4-1):042220. doi: 10.1103/PhysRevE.100.042220.
The study of pattern emergence together with exploration of the exemplar Turing model is enjoying a renaissance both from theoretical and experimental perspective. Here, we implement a stability analysis of spatially dependent reaction kinetics by exploring the effect of a jump discontinuity within piecewise constant kinetic parameters, using various methods to identify and confirm the diffusion-driven instability conditions. Essentially, the presence of stability or instability in Turing models is a local property for piecewise constant kinetic parameters and, as such, may be analyzed locally. In particular, a local assessment of whether parameters are within the Turing space provides a strong indication that for a large enough region with these parameters, an instability can be induced.
模式涌现的研究以及范例图灵模型的探索正从理论和实验两个角度重新兴起。在这里,我们通过探索分段常数动力学参数内跳跃不连续性的影响,使用各种方法来识别和确认扩散驱动不稳定性条件,对空间相关反应动力学进行稳定性分析。本质上,图灵模型中的稳定性或不稳定性是分段常数动力学参数的局部属性,因此可以在局部进行分析。具体来说,对参数是否在图灵空间内的局部评估提供了一个强有力的指示,即对于具有这些参数的足够大的区域,可以诱导不稳定性。