School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
Prog Nucl Magn Reson Spectrosc. 2019 Oct-Dec;114-115:192-210. doi: 10.1016/j.pnmrs.2019.06.004. Epub 2019 Jun 27.
Magic-angle spinning (MAS) solid-state NMR has provided structural insights into various bacteriophage systems including filamentous, spherical, and tailed bacteriophage viruses. A variety of methodologies have been utilized including elementary two and three-dimensional assignment experiments, proton-detection techniques at fast spinning speeds, non-uniform sampling, structure determination protocols, conformational dynamics revealed by recoupling of anisotropic interactions, and enhancement by dynamic nuclear polarization. This review summarizes most of the studies performed during the last decade by MAS techniques and makes comparisons with prior knowledge obtained from static and solution NMR techniques. Chemical shifts for the capsids of the various systems are reported and analyzed, and DNA shifts are reported and discussed in the context of general high molecular-weight DNA molecules. Chemical shift and torsion angle prediction techniques are compared and applied to the various phage systems. The structures of the intact M13 filamentous bacteriophage and that of the Acinetobacter phage AP205 capsid, determined using MAS-based experimental data, are presented. Finally, filamentous phages, which are highly rigid systems, show interesting dynamics at the interface of the capsid and DNA, and their mutual electrostatic interactions are shown to be mediated by highly mobile positively charged residues. Novel results obtained from recoupling the chemical shift anisotropy of a single arginine in IKe phage, which is in contact with its DNA, further demonstrate this point. MAS NMR thus provides many new insights into phage structure, and on the other hand the richness, complexity and variety of bacteriophage systems provide opportunities for new NMR methodologies and technique developments.
魔角旋转(MAS)固态 NMR 为各种噬菌体系统提供了结构见解,包括丝状、球形和有尾噬菌体病毒。已经利用了各种方法学,包括基本的二维和三维分配实验、在高速旋转速度下的质子检测技术、非均匀采样、结构确定协议、各向异性相互作用的重组合揭示的构象动力学,以及动态核极化的增强。这篇综述总结了过去十年中 MAS 技术进行的大部分研究,并与静态和溶液 NMR 技术获得的先前知识进行了比较。报告并分析了各种系统衣壳的化学位移,并在一般高分子量 DNA 分子的背景下报告和讨论了 DNA 位移。化学位移和扭转角预测技术进行了比较,并应用于各种噬菌体系统。使用基于 MAS 的实验数据确定了完整的 M13 丝状噬菌体和不动杆菌噬菌体 AP205 衣壳的结构。最后,丝状噬菌体是高度刚性的系统,在衣壳和 DNA 的界面处表现出有趣的动力学,并且它们的相互静电相互作用被证明是由高度移动的带正电荷的残基介导的。与 DNA 接触的 IKe 噬菌体中单个精氨酸的化学位移各向异性的重组合获得的新结果进一步证明了这一点。因此,MAS NMR 为噬菌体结构提供了许多新的见解,另一方面,噬菌体系统的丰富性、复杂性和多样性为新的 NMR 方法学和技术发展提供了机会。