Colakoglu Bulent, Alis Deniz, Yergin Mert
Vehbi Koç Foundation American Hospital, Department of Radiology, Istanbul, Turkey.
Istanbul Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Training and Research Hospital, Department of Radiology, Halkali, Istanbul, Turkey.
J Oncol. 2019 Oct 31;2019:6328329. doi: 10.1155/2019/6328329. eCollection 2019.
The aim of this study is to evaluate the diagnostic value of machine learning- (ML-) based quantitative texture analysis in the differentiation of benign and malignant thyroid nodules.
A sum of 306 quantitative textural features of 235 thyroid nodules (102 malignant, 43.4%; 133 benign, 56.4%) of a total of 198 patients were investigated using the random forest ML classifier. Feature selection and dimension reduction were conducted using reproducibility testing and a wrapper method. The diagnostic accuracy, sensitivity, specificity, and area under curve (AUC) of the proposed method were compared with the histopathological or cytopathological findings as reference methods.
Of the 306 initial texture features, 284 (92.2%) showed good reproducibility (intraclass correlation ≥0.80). The random forest classifier accurately identified 87 out of 102 malignant thyroid nodules and 117 out of 133 benign thyroid nodules, which is a diagnostic sensitivity of 85.2%, specificity of 87.9%, and accuracy of 86.8%. The AUC of the model was 0.92.
Quantitative textural analysis of thyroid nodules using ML classification can accurately discriminate benign and malignant thyroid nodules. Our findings should be validated by multicenter prospective studies using completely independent external data.
本研究旨在评估基于机器学习(ML)的定量纹理分析在鉴别甲状腺良恶性结节中的诊断价值。
使用随机森林ML分类器对198例患者共235个甲状腺结节(102个恶性,43.4%;133个良性,56.4%)的306个定量纹理特征进行研究。采用重复性测试和包装法进行特征选择和降维。将所提方法的诊断准确性、敏感性、特异性和曲线下面积(AUC)与组织病理学或细胞病理学检查结果作为参考方法进行比较。
在306个初始纹理特征中,284个(92.2%)具有良好的重复性(组内相关系数≥0.80)。随机森林分类器准确识别出102个恶性甲状腺结节中的87个和133个良性甲状腺结节中的117个,诊断敏感性为85.2%,特异性为87.9%,准确性为86.8%。该模型的AUC为0.92。
使用ML分类对甲状腺结节进行定量纹理分析能够准确区分甲状腺良恶性结节。我们的研究结果应通过使用完全独立外部数据的多中心前瞻性研究进行验证。