Suppr超能文献

基于机器学习的多参数传统多层计算机断层扫描影像组学用于提高腮腺肿瘤的鉴别诊断能力

Machine learning-based multiparametric traditional multislice computed tomography radiomics for improving the discrimination of parotid neoplasms.

作者信息

Xu Zhifeng, Jin Yabin, Wu Wenxiu, Wu Jinmian, Luo Bing, Zeng Chenglong, Guo Xiuqin, Gao Mingcong, Guo Shiqin, Pan Aizhen

机构信息

Department of Radiology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China.

Clinical Research Institute, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China.

出版信息

Mol Clin Oncol. 2021 Nov;15(5):245. doi: 10.3892/mco.2021.2407. Epub 2021 Sep 24.

Abstract

Characterization of parotid tumors is important for treatment planning and prognosis, and parotid tumor discrimination has recently been developed at the molecular level. The aim of the present study was to establish a machine learning (ML) predictive model based on multiparametric traditional multislice CT (MSCT) radiomic and clinical data analysis to improve the accuracy of differentiation among pleomorphic adenoma (PA), Warthin tumor (WT) and parotid carcinoma (PCa). A total of 345 patients (200 with WT, 91 with PA and 54 with PCa) with pathologically confirmed parotid tumors were retrospectively enrolled from five independent institutions between January 2010 and May 2019. A total of 273 patients recruited from institutions 1, 2 and 3 were randomly assigned to the training model; the independent validation set consisted of 72 patients treated at institutions 1, 4 and 5. Data were investigated using a linear discriminant analysis-based ML classifier. Feature selection and dimension reduction were conducted using reproducibility testing and a wrapper method. The diagnostic accuracy of the predictive model was compared with histopathological findings as reference results. This classifier achieved a satisfactory performance for the discrimination of PA, WT and PCa, with a total accuracy of 82.1% in the training cohort and 80.5% in the validation cohort. In conclusion, ML-based multiparametric traditional MSCT radiomics can improve the accuracy of differentiation among PA, WT and PCa. The findings of the present study should be validated by multicenter prospective studies using completely independent external data.

摘要

腮腺肿瘤的特征对于治疗方案规划和预后评估至关重要,并且近年来在分子水平上已经开展了腮腺肿瘤的鉴别研究。本研究的目的是基于多参数传统多层CT(MSCT)影像组学和临床数据分析建立一个机器学习(ML)预测模型,以提高多形性腺瘤(PA)、沃辛瘤(WT)和腮腺癌(PCa)之间鉴别诊断的准确性。2010年1月至2019年5月期间,从五个独立机构回顾性纳入了345例经病理证实的腮腺肿瘤患者(200例WT、91例PA和54例PCa)。从机构1、2和3招募的273例患者被随机分配到训练模型组;独立验证集由在机构1、4和5接受治疗的72例患者组成。使用基于线性判别分析的ML分类器对数据进行研究。采用重复性测试和包装法进行特征选择和降维。将预测模型的诊断准确性与组织病理学结果作为参考结果进行比较。该分类器在PA、WT和PCa的鉴别诊断中表现出令人满意的性能,训练队列的总准确率为82.1%,验证队列的总准确率为80.5%。总之,基于ML的多参数传统MSCT影像组学可以提高PA、WT和PCa之间鉴别诊断的准确性。本研究结果应通过使用完全独立外部数据的多中心前瞻性研究进行验证。

相似文献

2
CT-based radiomics with various classifiers for histological differentiation of parotid gland tumors.
Front Oncol. 2023 Mar 10;13:1118351. doi: 10.3389/fonc.2023.1118351. eCollection 2023.
4
Can Magnetic Resonance Radiomics Analysis Discriminate Parotid Gland Tumors? A Pilot Study.
Diagnostics (Basel). 2020 Nov 3;10(11):900. doi: 10.3390/diagnostics10110900.
7
Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods.
Eur Radiol. 2020 Aug;30(8):4595-4605. doi: 10.1007/s00330-020-06768-y. Epub 2020 Mar 28.
9
Deep learning based ultrasound analysis facilitates precise distinction between parotid pleomorphic adenoma and Warthin tumor.
Front Oncol. 2024 Feb 27;14:1337631. doi: 10.3389/fonc.2024.1337631. eCollection 2024.

引用本文的文献

1
Diagnostic accuracy of ultrasound and MRI in parotid gland tumors: A retrospective study.
Exp Ther Med. 2025 Jul 8;30(3):170. doi: 10.3892/etm.2025.12920. eCollection 2025 Sep.
2
The value of T1- and FST2-Weighted-based radiomics nomogram in differentiating pleomorphic adenoma and Warthin tumor.
Transl Oncol. 2024 Nov;49:102087. doi: 10.1016/j.tranon.2024.102087. Epub 2024 Aug 18.
3
CT-based radiomics with various classifiers for histological differentiation of parotid gland tumors.
Front Oncol. 2023 Mar 10;13:1118351. doi: 10.3389/fonc.2023.1118351. eCollection 2023.
4
The Role of Radiomics in Salivary Gland Imaging: A Systematic Review and Radiomics Quality Assessment.
Diagnostics (Basel). 2022 Dec 1;12(12):3002. doi: 10.3390/diagnostics12123002.

本文引用的文献

5
A multiparametric analysis based on DCE-MRI to improve the accuracy of parotid tumor discrimination.
Eur J Nucl Med Mol Imaging. 2019 Oct;46(11):2228-2234. doi: 10.1007/s00259-019-04447-9. Epub 2019 Aug 1.
6
Deep transfer learning methods for colon cancer classification in confocal laser microscopy images.
Int J Comput Assist Radiol Surg. 2019 Nov;14(11):1837-1845. doi: 10.1007/s11548-019-02004-1. Epub 2019 May 25.
7
CT-based radiomic model predicts high grade of clear cell renal cell carcinoma.
Eur J Radiol. 2018 Jun;103:51-56. doi: 10.1016/j.ejrad.2018.04.013. Epub 2018 Apr 11.
8
Vanishing Parotid Tumors on MR Imaging.
Yonago Acta Med. 2018 Mar 28;61(1):33-39. doi: 10.33160/yam.2018.03.005. eCollection 2018 Mar.
9
Characterization of salivary gland tumours with diffusion tensor imaging.
Dentomaxillofac Radiol. 2018 Jul;47(5):20170343. doi: 10.1259/dmfr.20170343. Epub 2018 Feb 22.
10
Computational Radiomics System to Decode the Radiographic Phenotype.
Cancer Res. 2017 Nov 1;77(21):e104-e107. doi: 10.1158/0008-5472.CAN-17-0339.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验