Suppr超能文献

靶向细胞代谢治疗癌症的前景与挑战。

The promise and peril of targeting cell metabolism for cancer therapy.

机构信息

National Cancer Institute, 1050 Boyles Street, Frederick, MD, 21702, USA.

出版信息

Cancer Immunol Immunother. 2020 Feb;69(2):255-261. doi: 10.1007/s00262-019-02432-7. Epub 2019 Nov 28.

Abstract

A major challenge of cancer immunotherapy is the potential for undesirable effects on bystander cells and tumor-associated immune cells. Fundamentally, we need to understand what effect targeting tumor metabolism has upon the metabolism and phenotype of tumor-associated leukocytes, whose function can be critical for effective cancer therapeutic strategies. Undesirable effects of cancer therapeutics are a major reason for drug-associated toxicity, which confounds drug dosing and efficacy. As with any chemotherapeutic agent, drugs targeting tumor metabolism will exert potent effects on host stromal cells and tumor-associated leukocytes. Any drug targeting glycolysis, for example, could metabolically starve tumor-infiltrating T cells, inhibit their effector function and enable tumor progression. The targeting of oxidative phosphorylation in tumors will have complex effects on the polarization and function of tumor-associated macrophages. In short, we need to improve our understanding of tumor and immune cell metabolism and devise ways to specifically target tumors without compromising necessary host metabolism. Exploiting cell-specific metabolic pathways to directly target tumor cells may minimize detrimental effects on tumor-associated leukocytes.

摘要

癌症免疫疗法的一个主要挑战是其对旁观者细胞和肿瘤相关免疫细胞的潜在不良影响。从根本上讲,我们需要了解靶向肿瘤代谢对肿瘤相关白细胞代谢和表型的影响,因为其功能对有效的癌症治疗策略至关重要。癌症治疗的不良影响是药物相关毒性的一个主要原因,这会影响药物剂量和疗效。与任何化疗药物一样,靶向肿瘤代谢的药物将对宿主基质细胞和肿瘤相关白细胞产生强烈影响。例如,任何针对糖酵解的药物都可能使浸润肿瘤的 T 细胞发生代谢饥饿,抑制其效应功能并促进肿瘤进展。肿瘤中氧化磷酸化的靶向作用将对肿瘤相关巨噬细胞的极化和功能产生复杂影响。简而言之,我们需要提高对肿瘤和免疫细胞代谢的认识,并设计出在不损害必要宿主代谢的情况下专门针对肿瘤的方法。利用细胞特异性代谢途径直接靶向肿瘤细胞可能会最大限度地减少对肿瘤相关白细胞的有害影响。

相似文献

1
The promise and peril of targeting cell metabolism for cancer therapy.
Cancer Immunol Immunother. 2020 Feb;69(2):255-261. doi: 10.1007/s00262-019-02432-7. Epub 2019 Nov 28.
2
Targeting T cell metabolism in the tumor microenvironment: an anti-cancer therapeutic strategy.
J Exp Clin Cancer Res. 2019 Sep 13;38(1):403. doi: 10.1186/s13046-019-1409-3.
3
Harnessing tumor-associated macrophages as aids for cancer immunotherapy.
Mol Cancer. 2019 Dec 5;18(1):177. doi: 10.1186/s12943-019-1102-3.
5
Immunometabolism at the Nexus of Cancer Therapeutic Efficacy and Resistance.
Front Immunol. 2021 May 17;12:657293. doi: 10.3389/fimmu.2021.657293. eCollection 2021.
7
Epigenetic modulation of antitumor immunity for improved cancer immunotherapy.
Mol Cancer. 2021 Dec 20;20(1):171. doi: 10.1186/s12943-021-01464-x.
8
Re-education of the Tumor Microenvironment With Targeted Therapies and Immunotherapies.
Front Immunol. 2020 Jul 28;11:1633. doi: 10.3389/fimmu.2020.01633. eCollection 2020.
9
Altered metabolism in cancer: insights into energy pathways and therapeutic targets.
Mol Cancer. 2024 Sep 18;23(1):203. doi: 10.1186/s12943-024-02119-3.
10
Targeting the Warburg effect for cancer treatment: Ketogenic diets for management of glioma.
Semin Cancer Biol. 2019 Jun;56:135-148. doi: 10.1016/j.semcancer.2017.12.011. Epub 2017 Dec 30.

引用本文的文献

1
Revisiting of Cancer Immunotherapy: Insight from the Dialogue between Glycolysis and PD-1/PD-L1 Axis in the Tumor Microenvironment.
Int J Biol Sci. 2025 Jan 13;21(3):1202-1221. doi: 10.7150/ijbs.104079. eCollection 2025.
2
Tumor energy metabolism: implications for therapeutic targets.
Mol Biomed. 2024 Nov 29;5(1):63. doi: 10.1186/s43556-024-00229-4.
3
Elucidation of the Role of SHMT2 in L-Serine Homeostasis in Hypoxic Hepa1-6 Cells.
Int J Mol Sci. 2024 Nov 2;25(21):11786. doi: 10.3390/ijms252111786.
4
DeepGR: a deep-learning prognostic model based on glycolytic radiomics for non-small cell lung cancer.
Transl Lung Cancer Res. 2024 Oct 31;13(10):2746-2760. doi: 10.21037/tlcr-24-716. Epub 2024 Oct 17.
7
RNA: The Unsuspected Conductor in the Orchestra of Macromolecular Crowding.
Chem Rev. 2024 Apr 24;124(8):4734-4777. doi: 10.1021/acs.chemrev.3c00575. Epub 2024 Apr 5.
8
Advances in macrophage and T cell metabolic reprogramming and immunotherapy in the tumor microenvironment.
PeerJ. 2024 Jan 15;12:e16825. doi: 10.7717/peerj.16825. eCollection 2024.
9
Genome-scale modeling predicts metabolic differences between macrophage subtypes in colorectal cancer.
iScience. 2023 Aug 9;26(9):107569. doi: 10.1016/j.isci.2023.107569. eCollection 2023 Sep 15.
10
JAZF1: A Metabolic Regulator of Sensitivity to a Polyamine-Targeted Therapy.
Mol Cancer Res. 2023 Jan 3;21(1):24-35. doi: 10.1158/1541-7786.MCR-22-0316.

本文引用的文献

1
Itaconate: the poster child of metabolic reprogramming in macrophage function.
Nat Rev Immunol. 2019 May;19(5):273-281. doi: 10.1038/s41577-019-0128-5.
3
Metformin Targets Mitochondrial Electron Transport to Reduce Air-Pollution-Induced Thrombosis.
Cell Metab. 2019 Feb 5;29(2):335-347.e5. doi: 10.1016/j.cmet.2018.09.019. Epub 2018 Oct 11.
4
Diversity and environmental adaptation of phagocytic cell metabolism.
J Leukoc Biol. 2019 Jan;105(1):37-48. doi: 10.1002/JLB.4RI0518-195R. Epub 2018 Sep 14.
5
Fatty acid metabolism complements glycolysis in the selective regulatory T cell expansion during tumor growth.
Proc Natl Acad Sci U S A. 2018 Jul 10;115(28):E6546-E6555. doi: 10.1073/pnas.1720113115. Epub 2018 Jun 25.
6
Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors.
J Clin Invest. 2018 Aug 31;128(9):3794-3805. doi: 10.1172/JCI99169. Epub 2018 Jul 30.
7
Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1.
Nature. 2018 Apr 5;556(7699):113-117. doi: 10.1038/nature25986. Epub 2018 Mar 28.
8
Extracellular Citrate Affects Critical Elements of Cancer Cell Metabolism and Supports Cancer Development .
Cancer Res. 2018 May 15;78(10):2513-2523. doi: 10.1158/0008-5472.CAN-17-2959. Epub 2018 Mar 6.
10
Caspase-1 cleaves PPARγ for potentiating the pro-tumor action of TAMs.
Nat Commun. 2017 Oct 3;8(1):766. doi: 10.1038/s41467-017-00523-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验