Zhu Xiaorong, Yan Jiaxian, Gu Min, Liu Tianyang, Dai Yafei, Gu Yanhui, Li Yafei
Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China.
School of Physical Science and Technology , Nanjing Normal University , Nanjing 210023 , China.
J Phys Chem Lett. 2019 Dec 19;10(24):7760-7766. doi: 10.1021/acs.jpclett.9b03392. Epub 2019 Dec 4.
Dual-metal-site catalysts (DMSCs) are emerging as a new frontier in the field of oxygen reduction reaction (ORR). However, there is a lack of design principles to provide a universal description of the relationship between intrinsic properties of DMSCs and the catalytic activity. Here, we identify the origin of ORR activity and unveil design principles for graphene-based DMSCs by means of density functional theory computations and machine learning (ML). Our results indicate that several experimentally unexplored DMSCs can show outstanding ORR activity surpassing that of platinum. Remarkably, our ML study reveals that the ORR activity of DMSCs is intrinsically governed by some fundamental factors, such as electron affinity, electronegativity, and radii of the embedded metal atoms. More importantly, we propose predictor equations with acceptable accuracy to quantitatively describe the ORR activity of DMSCs. Our work will accelerate the search for highly active DMSCs for ORR and other electrochemical reactions.
双金属位点催化剂(DMSCs)正在成为氧还原反应(ORR)领域的一个新前沿。然而,缺乏能对DMSCs的本征性质与催化活性之间的关系进行通用描述的设计原则。在此,我们通过密度泛函理论计算和机器学习(ML)确定了ORR活性的起源,并揭示了基于石墨烯的DMSCs的设计原则。我们的结果表明,几种尚未经实验探索的DMSCs可表现出超越铂的出色ORR活性。值得注意的是,我们的ML研究表明,DMSCs的ORR活性本质上受一些基本因素支配,如电子亲和能、电负性和嵌入金属原子的半径。更重要的是,我们提出了具有可接受精度的预测方程,以定量描述DMSCs的ORR活性。我们的工作将加速寻找用于ORR和其他电化学反应的高活性DMSCs。