Suppr超能文献

用于甲烷裂解的单原子合金催化剂的机器学习辅助设计

Machine learning aided design of single-atom alloy catalysts for methane cracking.

作者信息

Sun Jikai, Tu Rui, Xu Yuchun, Yang Hongyan, Yu Tie, Zhai Dong, Ci Xiuqin, Deng Weiqiao

机构信息

Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Binhai Road No.72, 266237, Qingdao, China.

出版信息

Nat Commun. 2024 Jul 18;15(1):6036. doi: 10.1038/s41467-024-50417-7.

Abstract

The process of CH cracking into H and carbon has gained wide attention for hydrogen production. However, traditional catalysis methods suffer rapid deactivation due to severe carbon deposition. In this study, we discover that effective CH cracking can be achieved at 450 °C over a Re/Ni single-atom alloy via ball milling. To explore single-atom alloy catalysis, we construct a library of 10,950 transition metal single-atom alloy surfaces and screen candidates based on C-H dissociation energy barriers predicted by a machine learning model. Experimental validation identifies Ir/Ni and Re/Ni as top performers. Notably, the non-noble metal Re/Ni achieves a hydrogen yield of 10.7 gH gcat h with 99.9% selectivity and 7.75% CH conversion at 450 °C, 1 atm. Here, we show the mechanical energy boosts CH conversion clearly and sustained CH cracking over 240 h is achieved, significantly surpassing other approaches in the literature.

摘要

甲烷裂解为氢和碳的过程因制氢而备受关注。然而,传统催化方法因严重积碳而迅速失活。在本研究中,我们发现通过球磨法,在450°C下,铼/镍单原子合金可实现有效的甲烷裂解。为探索单原子合金催化作用,我们构建了一个包含10950个过渡金属单原子合金表面的库,并基于机器学习模型预测的C-H解离能垒筛选候选材料。实验验证确定铱/镍和铼/镍为最佳材料。值得注意的是,非贵金属铼/镍在450°C、1个大气压下实现了10.7 gH gcat h的产氢量,选择性为99.9%,甲烷转化率为7.75%。在此,我们表明机械能显著提高了甲烷转化率,并实现了超过240小时的持续甲烷裂解,明显超越了文献中的其他方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b80d/11255339/6b587ffa04b8/41467_2024_50417_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验