Suppr超能文献

随着意识的增强和减弱,传染病和行为的共同进化。

The coevolution of contagion and behavior with increasing and decreasing awareness.

机构信息

Complex Systems Laboratory, Physics Department, Alzahra University, Tehran, Iran.

Department of Social and Political Sciences, University of Milan, Milan, Italy.

出版信息

PLoS One. 2019 Dec 3;14(12):e0225447. doi: 10.1371/journal.pone.0225447. eCollection 2019.

Abstract

Understanding the effects of individual awareness on epidemic phenomena is important to comprehend the coevolving system dynamic, to improve forecasting, and to better evaluate the outcome of possible interventions. In previous models of epidemics on social networks, individual awareness has often been approximated as a generic personal trait that depends on social reinforcement, and used to introduce variability in state transition probabilities. A novelty of this work is to assume that individual awareness is a function of several contributing factors pooled together, different by nature and dynamics, and to study it for different epidemic categories. This way, our model still has awareness as the core attribute that may change state transition probabilities. Another contribution is to study positive and negative variations of awareness, in a contagion-behavior model. Imitation is the key mechanism that we model for manipulating awareness, under different network settings and assumptions, in particular regarding the degree of intentionality that individuals may exhibit in spreading an epidemic. Three epidemic categories are considered-disease, addiction, and rumor-to discuss different imitation mechanisms and degree of intentionality. We assume a population with a heterogeneous distribution of awareness and different response mechanisms to information gathered from the network. With simulations, we show the interplay between population and awareness factors producing a distribution of state transition probabilities and analyze how different network and epidemic configurations modify transmission patterns.

摘要

理解个体意识对流行病现象的影响对于理解共同进化系统动态、提高预测能力以及更好地评估可能干预措施的结果非常重要。在社交网络上的流行病的先前模型中,个体意识通常被近似为一种依赖于社会强化的通用个人特质,并用于引入状态转移概率的可变性。这项工作的新颖之处在于假设个体意识是几个共同作用的因素的函数,这些因素在性质和动态上都不同,并针对不同的流行病类别进行研究。这样,我们的模型仍然将意识作为可能改变状态转移概率的核心属性。另一个贡献是在传染病行为模型中研究意识的积极和消极变化。模仿是我们用于在不同的网络设置和假设下操纵意识的关键机制,特别是在个人在传播流行病时可能表现出的有意程度方面。考虑了三种流行病类别——疾病、成瘾和谣言——以讨论不同的模仿机制和有意程度。我们假设一个具有不同意识和对从网络中收集的信息的不同反应机制的异质分布的人群。通过模拟,我们展示了人口和意识因素之间的相互作用,产生了状态转移概率的分布,并分析了不同的网络和流行病配置如何改变传播模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6c1/6890210/7dc359a58a9a/pone.0225447.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验