Suppr超能文献

具有力学约束的桁架结构分析的域分离量子神经网络

Domain-Separated Quantum Neural Network for Truss Structural Analysis with Mechanics-Informed Constraints.

作者信息

Ha Hyeonju, Shon Sudeok, Lee Seungjae

机构信息

School of Industrial Design & Architectural Engineering, Korea University of Technology & Education, 1600 Chungjeol-ro, Byeongcheon-myeon, Cheonan 31253, Republic of Korea.

出版信息

Biomimetics (Basel). 2025 Jun 16;10(6):407. doi: 10.3390/biomimetics10060407.

Abstract

This study proposes an index-based quantum neural network (QNN) model, built upon a variational quantum circuit (VQC), as a surrogate framework for the static analysis of truss structures. Unlike coordinate-based models, the proposed QNN uses discrete member and node indices as inputs, and it adopts a separate-domain strategy that partitions the structure for parallel training. This architecture reflects the way nature organizes and optimizes complex systems, thereby enhancing both flexibility and scalability. Independent quantum circuits are assigned to each separate domain, and a mechanics-informed loss function based on the force method is formulated within a Lagrangian dual framework to embed physical constraints directly into the training process. As a result, the model achieves high prediction accuracy and fast convergence, even under complex structural conditions with relatively few parameters. Numerical experiments on 2D and 3D truss structures show that the QNN reduces the number of parameters by up to 64% compared to conventional neural networks, while achieving higher accuracy. Even within the same QNN architecture, the separate-domain approach outperforms the single-domain model with a 6.25% reduction in parameters. The proposed index-based QNN model has demonstrated practical applicability for structural analysis and shows strong potential as a quantum-based numerical analysis tool for future applications in building structure optimization and broader engineering domains.

摘要

本研究提出了一种基于变分量子电路(VQC)构建的基于索引的量子神经网络(QNN)模型,作为桁架结构静态分析的替代框架。与基于坐标的模型不同,所提出的QNN使用离散的构件和节点索引作为输入,并采用将结构划分为多个部分进行并行训练的分域策略。这种架构反映了自然组织和优化复杂系统的方式,从而提高了灵活性和可扩展性。为每个单独的域分配独立的量子电路,并在拉格朗日对偶框架内制定基于力法的力学知识损失函数,以将物理约束直接嵌入训练过程。结果,即使在参数相对较少的复杂结构条件下,该模型也能实现高预测精度和快速收敛。对二维和三维桁架结构的数值实验表明,与传统神经网络相比,QNN的参数数量减少了多达64%,同时实现了更高的精度。即使在相同的QNN架构内,分域方法也优于单域模型,参数减少了6.25%。所提出的基于索引的QNN模型已证明在结构分析中具有实际适用性,并显示出作为基于量子的数值分析工具在未来建筑结构优化及更广泛工程领域应用中的强大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1574/12190723/c13004eb5c99/biomimetics-10-00407-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验