Suppr超能文献

MLBCD:用于大临床数据的机器学习工具。

MLBCD: a machine learning tool for big clinical data.

机构信息

Department of Biomedical Informatics, University of Utah, Suite 140, 421 Wakara Way, Salt Lake City, UT 84108 USA.

出版信息

Health Inf Sci Syst. 2015 Sep 28;3:3. doi: 10.1186/s13755-015-0011-0. eCollection 2015.

Abstract

BACKGROUND

Predictive modeling is fundamental for extracting value from large clinical data sets, or "big clinical data," advancing clinical research, and improving healthcare. Machine learning is a powerful approach to predictive modeling. Two factors make machine learning challenging for healthcare researchers. First, before training a machine learning model, the values of one or more model parameters called hyper-parameters must typically be specified. Due to their inexperience with machine learning, it is hard for healthcare researchers to choose an appropriate algorithm and hyper-parameter values. Second, many clinical data are stored in a special format. These data must be iteratively transformed into the relational table format before conducting predictive modeling. This transformation is time-consuming and requires computing expertise.

METHODS

This paper presents our vision for and design of MLBCD (Machine Learning for Big Clinical Data), a new software system aiming to address these challenges and facilitate building machine learning predictive models using big clinical data.

RESULTS

The paper describes MLBCD's design in detail.

CONCLUSIONS

By making machine learning accessible to healthcare researchers, MLBCD will open the use of big clinical data and increase the ability to foster biomedical discovery and improve care.

摘要

背景

预测建模对于从大型临床数据集(即“大数据”)中提取价值、推进临床研究和改善医疗保健至关重要。机器学习是一种强大的预测建模方法。有两个因素使得机器学习对医疗保健研究人员具有挑战性。首先,在训练机器学习模型之前,通常必须指定一个或多个称为超参数的模型参数的值。由于他们缺乏机器学习方面的经验,医疗保健研究人员很难选择合适的算法和超参数值。其次,许多临床数据以特殊格式存储。在进行预测建模之前,这些数据必须迭代转换为关系表格式。这种转换既耗时又需要计算专业知识。

方法

本文介绍了我们对 MLBCD(用于大型临床数据的机器学习)的愿景和设计,这是一个新的软件系统,旨在解决这些挑战,并促进使用大型临床数据构建机器学习预测模型。

结果

本文详细描述了 MLBCD 的设计。

结论

通过使机器学习易于医疗保健研究人员使用,MLBCD 将开放使用大型临床数据,并提高促进生物医学发现和改善护理的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a7c/4584489/36f9cde07f28/13755_2015_11_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验