Carvalho William O F, Aiex Taier Filho Marcio Tulio, Oliveira Osvaldo N, Mejía-Salazar Jorge Ricardo, Pereira de Figueiredo Felipe Augusto
Sao Carlos Institute of Physics, University of Sao Paulo, CP 369, São Carlos, São Paulo 13560-970, Brazil.
National Institute of Telecommunications (Inatel), Santa Rita do Sapucaí, Minas Gerais 37540-000, Brazil.
ACS Appl Mater Interfaces. 2024 Aug 14;16(32):42828-42834. doi: 10.1021/acsami.4c06740. Epub 2024 Jul 30.
All-dielectric magnetophotonic nanostructures are promising for integrated nanophotonic devices with high resolution and sensitivity, but their design requires computationally demanding electromagnetic simulations evaluated through trial and error. In this paper, we propose a machine-learning approach to accelerate the design of these nanostructures. Using a data set of 12 170 samples containing four geometric parameters of the nanostructure and the incidence wavelength, trained neural network and polynomial regression algorithms were capable of predicting the amplitude of the transverse magneto-optical Kerr effect (TMOKE) within a time frame of 10 s and mean square error below 4.2%. With this approach, one can readily identify nanostructures suitable for sensing at ultralow analyte concentrations in aqueous solutions. As a proof of principle, we used the machine-learning models to determine the sensitivity ( = |Δθ/Δ|) of a nanophotonic grating, which is competitive with state-of-the-art systems and exhibits a figure of merit of 672 RIU. Furthermore, researchers can use the predictions of TMOKE peaks generated by the algorithms to assess the suitability for experimental setups, adding a layer of utility to the machine-learning methodology.
全介质磁光子纳米结构对于具有高分辨率和灵敏度的集成纳米光子器件很有前景,但它们的设计需要通过反复试验进行计算要求很高的电磁模拟。在本文中,我们提出了一种机器学习方法来加速这些纳米结构的设计。使用包含纳米结构的四个几何参数和入射波长的12170个样本的数据集,经过训练的神经网络和多项式回归算法能够在10秒的时间范围内预测横向磁光克尔效应(TMOKE)的幅度,且均方误差低于4.2%。通过这种方法,可以很容易地识别出适用于检测水溶液中超低分析物浓度的纳米结构。作为原理验证,我们使用机器学习模型来确定纳米光子光栅的灵敏度( = |Δθ/Δ|),该灵敏度与最先进的系统具有竞争力,并且品质因数为672 RIU。此外,研究人员可以使用算法生成的TMOKE峰的预测结果来评估对实验装置的适用性,为机器学习方法增添了一层实用性。