Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada.
PLoS Comput Biol. 2019 Dec 11;15(12):e1007459. doi: 10.1371/journal.pcbi.1007459. eCollection 2019 Dec.
Single and collective cell dynamics, cell shape changes, and cell migration can be conveniently represented by the Cellular Potts Model, a computational platform based on minimization of a Hamiltonian. Using the fact that a force field is easily derived from a scalar energy (F = -∇H), we develop a simple algorithm to associate effective forces with cell shapes in the CPM. We predict the traction forces exerted by single cells of various shapes and sizes on a 2D substrate. While CPM forces are specified directly from the Hamiltonian on the cell perimeter, we approximate the force field inside the cell domain using interpolation, and refine the results with smoothing. Predicted forces compare favorably with experimentally measured cellular traction forces. We show that a CPM model with internal signaling (such as Rho-GTPase-related contractility) can be associated with retraction-protrusion forces that accompany cell shape changes and migration. We adapt the computations to multicellular systems, showing, for example, the forces that a pair of swirling cells exert on one another, demonstrating that our algorithm works equally well for interacting cells. Finally, we show forces exerted by cells on one another in classic cell-sorting experiments.
单细胞和群体细胞动力学、细胞形状变化和细胞迁移可以通过基于哈密顿量最小化的计算平台——细胞点模型(Cellular Potts Model)方便地表示。利用从标量能量(F = -∇H)很容易推导出力场的事实,我们开发了一种简单的算法,将有效力与 CPM 中的细胞形状相关联。我们预测了各种形状和大小的单个细胞在 2D 基质上施加的牵引力。虽然 CPM 力是直接根据细胞边界上的哈密顿量指定的,但我们使用插值来近似细胞域内的力场,并通过平滑来细化结果。预测的力与实验测量的细胞牵引力非常吻合。我们表明,具有内部信号(如 Rho-GTPase 相关收缩性)的 CPM 模型可以与伴随细胞形状变化和迁移的回缩-突出力相关联。我们将计算方法应用于多细胞系统,例如,一对旋转细胞相互施加的力,证明我们的算法对相互作用的细胞同样有效。最后,我们展示了经典细胞分选实验中细胞之间相互施加的力。