Oxford e-Research Centre, Department of Engineering Science, University of Oxford, 7 Keble Road, Oxford, OX1 3QG, United Kingdom.
Sci Data. 2019 Dec 12;6(1):271. doi: 10.1038/s41597-019-0286-0.
We outline a principled approach to data FAIRification rooted in the notions of experimental design, and whose main intent is to clarify the semantics of data matrices. Using two related metabolomics datasets associated to journal articles, we perform retrospective data and metadata curation and re-annotation, using community, open, interoperability standards. The results are semantically-anchored data matrices, deposited in public archives, which are readable by software agents for data-level queries, and which can support the reproducibility and reuse of the data underpinning the publications.
我们概述了一种基于实验设计理念的数据 FAIR 化原则方法,其主要目的是澄清数据矩阵的语义。使用与期刊文章相关的两个相关代谢组学数据集,我们使用社区、开放、互操作性标准进行回顾性数据和元数据整理和重新注释。结果是语义锚定的数据矩阵,存储在公共档案中,软件代理可以对其进行数据级查询,并且可以支持支持出版物基础数据的可重复性和再利用。