Suppr超能文献

一个模块化的 cGAN 分类框架:在结直肠肿瘤检测中的应用。

A modular cGAN classification framework: Application to colorectal tumor detection.

机构信息

Center for Biomedical Informatics, Wake Forest School of Medicine, Winston-Salem, USA.

Department of Pathology, The Ohio State University, Columbus, USA.

出版信息

Sci Rep. 2019 Dec 12;9(1):18969. doi: 10.1038/s41598-019-55257-w.

Abstract

Automatic identification of tissue structures in the analysis of digital tissue biopsies remains an ongoing problem in digital pathology. Common barriers include lack of reliable ground truth due to inter- and intra- reader variability, class imbalances, and inflexibility of discriminative models. To overcome these barriers, we are developing a framework that benefits from a reliable immunohistochemistry ground truth during labeling, overcomes class imbalances through single task learning, and accommodates any number of classes through a minimally supervised, modular model-per-class paradigm. This study explores an initial application of this framework, based on conditional generative adversarial networks, to automatically identify tumor from non-tumor regions in colorectal H&E slides. The average precision, sensitivity, and F1 score during validation was 95.13 ± 4.44%, 93.05 ± 3.46%, and 94.02 ± 3.23% and for an external test dataset was 98.75 ± 2.43%, 88.53 ± 5.39%, and 93.31 ± 3.07%, respectively. With accurate identification of tumor regions, we plan to further develop our framework to establish a tumor front, from which tumor buds can be detected in a restricted region. This model will be integrated into a larger system which will quantitatively determine the prognostic significance of tumor budding.

摘要

在数字病理学分析中,自动识别组织结构仍然是一个持续存在的问题。常见的障碍包括由于读者间和读者内的可变性、类别不平衡以及判别模型的不灵活性而缺乏可靠的真实数据。为了克服这些障碍,我们正在开发一种框架,该框架在标记过程中受益于可靠的免疫组织化学真实数据,通过单任务学习克服类别不平衡,并通过最小监督、模块化模型-类别范例来适应任意数量的类别。本研究探索了基于条件生成对抗网络的该框架在自动识别结直肠 H&E 幻灯片中非肿瘤区域和肿瘤区域的初步应用。验证期间的平均精度、敏感性和 F1 评分为 95.13±4.44%、93.05±3.46%和 94.02±3.23%,外部测试数据集的平均精度、敏感性和 F1 评分为 98.75±2.43%、88.53±5.39%和 93.31±3.07%。通过对肿瘤区域的准确识别,我们计划进一步开发我们的框架,以建立一个肿瘤前沿,从而可以在受限区域中检测到肿瘤芽。该模型将被集成到一个更大的系统中,该系统将定量确定肿瘤芽的预后意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验