Suppr超能文献

数字显微镜组织图像的分割与分类方法

Methods for Segmentation and Classification of Digital Microscopy Tissue Images.

作者信息

Vu Quoc Dang, Graham Simon, Kurc Tahsin, To Minh Nguyen Nhat, Shaban Muhammad, Qaiser Talha, Koohbanani Navid Alemi, Khurram Syed Ali, Kalpathy-Cramer Jayashree, Zhao Tianhao, Gupta Rajarsi, Kwak Jin Tae, Rajpoot Nasir, Saltz Joel, Farahani Keyvan

机构信息

Department of Computer Science and Engineering, Sejong University, Seoul, South Korea.

Department of Computer Science, University of Warwick, Coventry, United Kingdom.

出版信息

Front Bioeng Biotechnol. 2019 Apr 2;7:53. doi: 10.3389/fbioe.2019.00053. eCollection 2019.

Abstract

High-resolution microscopy images of tissue specimens provide detailed information about the morphology of normal and diseased tissue. Image analysis of tissue morphology can help cancer researchers develop a better understanding of cancer biology. Segmentation of nuclei and classification of tissue images are two common tasks in tissue image analysis. Development of accurate and efficient algorithms for these tasks is a challenging problem because of the complexity of tissue morphology and tumor heterogeneity. In this paper we present two computer algorithms; one designed for segmentation of nuclei and the other for classification of whole slide tissue images. The segmentation algorithm implements a multiscale deep residual aggregation network to accurately segment nuclear material and then separate clumped nuclei into individual nuclei. The classification algorithm initially carries out patch-level classification via a deep learning method, then patch-level statistical and morphological features are used as input to a random forest regression model for whole slide image classification. The segmentation and classification algorithms were evaluated in the MICCAI 2017 Digital Pathology challenge. The segmentation algorithm achieved an accuracy score of 0.78. The classification algorithm achieved an accuracy score of 0.81. These scores were the highest in the challenge.

摘要

组织标本的高分辨率显微镜图像提供了有关正常组织和病变组织形态的详细信息。组织形态的图像分析有助于癌症研究人员更好地理解癌症生物学。细胞核分割和组织图像分类是组织图像分析中的两项常见任务。由于组织形态的复杂性和肿瘤异质性,为这些任务开发准确高效的算法是一个具有挑战性的问题。在本文中,我们提出了两种计算机算法;一种用于细胞核分割,另一种用于全玻片组织图像分类。分割算法实现了一个多尺度深度残差聚合网络,以准确分割核物质,然后将聚集的细胞核分离为单个细胞核。分类算法首先通过深度学习方法进行图像块级分类,然后将图像块级的统计和形态特征作为随机森林回归模型的输入,用于全玻片图像分类。分割和分类算法在2017年医学图像计算与计算机辅助干预国际会议(MICCAI)数字病理学挑战赛中进行了评估。分割算法的准确率得分为0.78。分类算法的准确率得分为0.81。这些分数是挑战赛中最高的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd4d/6454006/86d4cb2143cb/fbioe-07-00053-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验