Suppr超能文献

基于生成模型的少样本结直肠癌肿瘤芽分割

Few-shot Tumor Bud Segmentation Using Generative Model in Colorectal Carcinoma.

作者信息

Su Ziyu, Chen Wei, Leigh Preston J, Sajjad Usama, Niu Shuo, Rezapour Mostafa, Frankel Wendy L, Gurcan Metin N, Niazi M Khalid Khan

机构信息

Center for Artificial Intelligence Research, Wake Forest University, School of Medicine, Winston-Salem, NC, USA.

Department of Pathology, The Ohio State University.

出版信息

Proc SPIE Int Soc Opt Eng. 2024 Feb;12933. doi: 10.1117/12.3006418. Epub 2024 Apr 3.

Abstract

Current deep learning methods in histopathology are limited by the small amount of available data and time consumption in labeling the data. Colorectal cancer (CRC) tumor budding quantification performed using H&E-stained slides is crucial for cancer staging and prognosis but is subject to labor-intensive annotation and human bias. Thus, acquiring a large-scale, fully annotated dataset for training a tumor budding (TB) segmentation/detection system is difficult. Here, we present a DatasetGAN-based approach that can generate essentially an unlimited number of images with TB masks from a moderate number of unlabeled images and a few annotated images. The images generated by our model closely resemble the real colon tissue on H&E-stained slides. We test the performance of this model by training a downstream segmentation model, UNet++, on the generated images and masks. Our results show that the trained UNet++ model can achieve reasonable TB segmentation performance, especially at the instance level. This study demonstrates the potential of developing an annotation-efficient segmentation model for automatic TB detection and quantification.

摘要

当前组织病理学中的深度学习方法受到可用数据量少以及数据标注耗时的限制。使用苏木精-伊红(H&E)染色切片进行的结直肠癌(CRC)肿瘤芽生定量对于癌症分期和预后至关重要,但需要大量人力进行标注且存在人为偏差。因此,获取用于训练肿瘤芽生(TB)分割/检测系统的大规模、完全标注数据集很困难。在此,我们提出一种基于数据集生成对抗网络(DatasetGAN)的方法,该方法可以从适量的未标注图像和少量标注图像中生成本质上数量无限的带有TB掩码的图像。我们模型生成的图像与H&E染色切片上的真实结肠组织非常相似。我们通过在生成的图像和掩码上训练下游分割模型UNet++来测试该模型的性能。我们的结果表明,训练后的UNet++模型可以实现合理的TB分割性能,尤其是在实例级别。本研究证明了开发一种用于自动TB检测和定量的标注高效分割模型的潜力。

相似文献

1
Few-shot Tumor Bud Segmentation Using Generative Model in Colorectal Carcinoma.
Proc SPIE Int Soc Opt Eng. 2024 Feb;12933. doi: 10.1117/12.3006418. Epub 2024 Apr 3.
2
Adapting SAM to Histopathology Images for Tumor Bud Segmentation in Colorectal Cancer.
Proc SPIE Int Soc Opt Eng. 2024 Feb;12933. doi: 10.1117/12.3006517. Epub 2024 Apr 3.
3
Generative Modeling of Histology Tissue Reduces Human Annotation Effort for Segmentation Model Development.
Proc SPIE Int Soc Opt Eng. 2023 Feb;12471. doi: 10.1117/12.2655282. Epub 2023 Apr 6.
4
MaskMitosis: a deep learning framework for fully supervised, weakly supervised, and unsupervised mitosis detection in histopathology images.
Med Biol Eng Comput. 2020 Jul;58(7):1603-1623. doi: 10.1007/s11517-020-02175-z. Epub 2020 May 22.
5
[A meta-learning based method for segmentation of few-shot magnetic resonance images].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Apr 25;40(2):193-201. doi: 10.7507/1001-5515.202208004.
6
A robust image segmentation and synthesis pipeline for histopathology.
Med Image Anal. 2025 Jan;99:103344. doi: 10.1016/j.media.2024.103344. Epub 2024 Sep 11.
7
Enhancing Colorectal Cancer Tumor Bud Detection Using Deep Learning from Routine H&E-Stained Slides.
Proc SPIE Int Soc Opt Eng. 2024 Feb;12933. doi: 10.1117/12.3006796. Epub 2024 Apr 3.
8
Fully Automated Tumor Bud Assessment in Hematoxylin and Eosin-Stained Whole Slide Images of Colorectal Cancer.
Mod Pathol. 2023 Sep;36(9):100233. doi: 10.1016/j.modpat.2023.100233. Epub 2023 May 30.
9
Annotation-efficient training of medical image segmentation network based on scribble guidance in difficult areas.
Int J Comput Assist Radiol Surg. 2024 Jan;19(1):87-96. doi: 10.1007/s11548-023-02931-0. Epub 2023 May 26.

本文引用的文献

1
One label is all you need: Interpretable AI-enhanced histopathology for oncology.
Semin Cancer Biol. 2023 Dec;97:70-85. doi: 10.1016/j.semcancer.2023.09.006. Epub 2023 Oct 11.
2
Fully Automated Tumor Bud Assessment in Hematoxylin and Eosin-Stained Whole Slide Images of Colorectal Cancer.
Mod Pathol. 2023 Sep;36(9):100233. doi: 10.1016/j.modpat.2023.100233. Epub 2023 May 30.
3
Colorectal cancer statistics, 2023.
CA Cancer J Clin. 2023 May-Jun;73(3):233-254. doi: 10.3322/caac.21772. Epub 2023 Mar 1.
4
Machine learning-based colorectal cancer prediction using global dietary data.
BMC Cancer. 2023 Feb 10;23(1):144. doi: 10.1186/s12885-023-10587-x.
6
Improving tumor budding reporting in colorectal cancer: a Delphi consensus study.
Virchows Arch. 2021 Sep;479(3):459-469. doi: 10.1007/s00428-021-03059-9. Epub 2021 Mar 1.
7
Aspects of colorectal cancer screening, methods, age and gender.
J Intern Med. 2021 Apr;289(4):493-507. doi: 10.1111/joim.13171. Epub 2020 Sep 14.
9
A Style-Based Generator Architecture for Generative Adversarial Networks.
IEEE Trans Pattern Anal Mach Intell. 2021 Dec;43(12):4217-4228. doi: 10.1109/TPAMI.2020.2970919. Epub 2021 Nov 3.
10
Tumor Budding Detection System in Whole Slide Pathology Images.
J Med Syst. 2019 Dec 18;44(2):38. doi: 10.1007/s10916-019-1515-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验