Department of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
Sci Rep. 2019 Dec 13;9(1):19041. doi: 10.1038/s41598-019-55517-9.
In this work, we have successfully synthesized core-shell structured Au-PDA@SiO nanospheres and decorated on reduced graphene oxide (rGO) modified glassy carbon electrode for the electrochemical detection of cefotaxime. The one-pot hydrothermal method was used to synthesis core-shell nanostructures by loading Au nanoparticles on polydopamine (PDA) coated SiO nanospheres. The as-prepared Au-PDA@SiO nanospheres were used to fabricate electrochemically reduced graphene oxide (rGO) modified glassy carbon electrode (Au-PDA@SiO/rGO/GCE) for electrochemical determination of cefotaxime. Scanning electron microscopy, powder x-ray diffraction, transmission electron microscopy, and Fourier-transform infrared spectroscopy were used to confirm the structure and morphology of the as-prepared nanospheres. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were performed for electrochemical characterizations different modified electrodes. It was revealed that the nanocomposite modified electrodes exhibited excellent electrochemical performances for electrooxidation of target analytes and could achieve ultra-sensitive detections. A linear relationship was observed between peak currents and concentrations in the ranges of 1.0 × 10 to 5.0 × 10 M (R = 0.9877), and 1.0 × 10 to 5.0 × 10 M (R = 0.9821) for cefotaxime with a detection limit (S/N = 3) of 1.0 × 10 M. It can be deduced that the proposed sensor is suitable for the sensitive detection of cefotaxime in pharmaceutical samples.
在这项工作中,我们成功合成了核壳结构的 Au-PDA@SiO 纳米球,并将其修饰在还原氧化石墨烯 (rGO) 修饰的玻碳电极上,用于头孢噻肟的电化学检测。采用一锅水热法,通过将金纳米粒子负载在聚多巴胺 (PDA) 包覆的 SiO 纳米球上,合成核壳纳米结构。所制备的 Au-PDA@SiO 纳米球用于制备电化学还原氧化石墨烯 (rGO) 修饰的玻碳电极 (Au-PDA@SiO/rGO/GCE),用于电化学测定头孢噻肟。采用扫描电子显微镜、粉末 X 射线衍射、透射电子显微镜和傅里叶变换红外光谱对所制备的纳米球的结构和形貌进行了确认。采用循环伏安法 (CV) 和电化学阻抗谱 (EIS) 对不同修饰电极的电化学性能进行了表征。结果表明,纳米复合材料修饰电极对目标分析物的电氧化表现出优异的电化学性能,可实现超灵敏检测。在 1.0×10 到 5.0×10 M (R=0.9877) 和 1.0×10 到 5.0×10 M (R=0.9821) 的范围内,观察到峰电流与浓度之间呈线性关系,头孢噻肟的检测限 (S/N=3) 为 1.0×10 M。可以推断,所提出的传感器适用于药物样品中头孢噻肟的灵敏检测。