Suppr超能文献

基于眼科摄影的计算机辅助糖尿病视网膜病变检测:系统评价与Meta分析

Computer aided diabetic retinopathy detection based on ophthalmic photography: a systematic review and Meta-analysis.

作者信息

Wu Hui-Qun, Shan Yan-Xing, Wu Huan, Zhu Di-Ru, Tao Hui-Min, Wei Hua-Gen, Shen Xiao-Yan, Sang Ai-Min, Dong Jian-Cheng

机构信息

Department of Medical Informatics, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China.

School of Information Science and Technology, Nantong University, Nantong 226001, Jiangsu Province, China.

出版信息

Int J Ophthalmol. 2019 Dec 18;12(12):1908-1916. doi: 10.18240/ijo.2019.12.14. eCollection 2019.

Abstract

AIM

To ensure the diagnostic value of computer aided techniques in diabetic retinopathy (DR) detection based on ophthalmic photography (OP).

METHODS

PubMed, EMBASE, Ei village, IEEE Xplore and Cochrane Library database were searched systematically for literatures about computer aided detection (CAD) in DR detection. The methodological quality of included studies was appraised by the Quality Assessment Tool for Diagnostic Accuracy Studies (QUADAS-2). Meta-DiSc was utilized and a random effects model was plotted to summarize data from those included studies. Summary receiver operating characteristic curves were selected to estimate the overall test performance. Subgroup analysis was used to identify the efficiency of CAD in detecting DR, exudates (EXs), microaneurysms (MAs) as well as hemorrhages (HMs), and neovascularizations (NVs). Publication bias was analyzed using STATA.

RESULTS

Fourteen articles were finally included in this Meta-analysis after literature review. Pooled sensitivity and specificity were 90% (95%CI, 85%-94%) and 90% (95%CI, 80%-96%) respectively for CAD in DR detection. With regard to CAD in EXs detecting, pooled sensitivity, specificity were 89% (95%CI, 88%-90%) and 99% (95%CI, 99%-99%) respectively. In aspect of MAs and HMs detection, pooled sensitivity and specificity of CAD were 42% (95%CI, 41%-44%) and 93% (95%CI, 93%-93%) respectively. Besides, pooled sensitivity and specificity were 94% (95%CI, 89%-97%) and 87% (95%CI, 83%-90%) respectively for CAD in NVs detection. No potential publication bias was observed.

CONCLUSION

CAD demonstrates overall high diagnostic accuracy for detecting DR and pathological lesions based on OP. Further prospective clinical trials are needed to prove such effect.

摘要

目的

基于眼科摄影(OP)确保计算机辅助技术在糖尿病视网膜病变(DR)检测中的诊断价值。

方法

系统检索PubMed、EMBASE、Ei村、IEEE Xplore和Cochrane图书馆数据库中有关计算机辅助检测(CAD)在DR检测中的文献。采用诊断准确性研究质量评估工具(QUADAS-2)对纳入研究的方法学质量进行评估。使用Meta-DiSc并绘制随机效应模型来汇总纳入研究的数据。选择汇总受试者工作特征曲线来估计总体测试性能。进行亚组分析以确定CAD在检测DR、渗出物(EXs)、微动脉瘤(MAs)、出血(HMs)以及新生血管(NVs)方面的效率。使用STATA分析发表偏倚。

结果

文献回顾后,本Meta分析最终纳入14篇文章。CAD在DR检测中的合并敏感度和特异度分别为90%(95%CI,85%-94%)和90%(95%CI,80%-96%)。在EXs检测中,CAD的合并敏感度和特异度分别为89%(95%CI,88%-90%)和99%(95%CI,99%-99%)。在MAs和HMs检测方面,CAD的合并敏感度和特异度分别为42%(95%CI,41%-44%)和93%(95%CI,93%-93%)。此外,CAD在NVs检测中的合并敏感度和特异度分别为94%(95%CI,89%-97%)和87%(95%CI,83%-90%)。未观察到潜在的发表偏倚。

结论

基于OP,CAD在检测DR和病理病变方面总体具有较高的诊断准确性。需要进一步的前瞻性临床试验来证实这种效果。

相似文献

本文引用的文献

4
Fully automated detection of retinal disorders by image-based deep learning.基于图像的深度学习技术对视网膜疾病进行全自动检测。
Graefes Arch Clin Exp Ophthalmol. 2019 Mar;257(3):495-505. doi: 10.1007/s00417-018-04224-8. Epub 2019 Jan 4.
6
Algorithms for red lesion detection in Diabetic Retinopathy: A review.糖尿病视网膜病变中红色病灶检测的算法:综述。
Biomed Pharmacother. 2018 Nov;107:681-688. doi: 10.1016/j.biopha.2018.07.175. Epub 2018 Aug 18.
7
Hard exudates segmentation based on learned initial seeds and iterative graph cut.基于学习的初始种子和迭代图割的硬性渗出物分割。
Comput Methods Programs Biomed. 2018 May;158:173-183. doi: 10.1016/j.cmpb.2018.02.011. Epub 2018 Feb 20.
8

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验