Chen Min, Cooper Robert F, Gee James C, Brainard David H, Morgan Jessica I W
Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA.
Biomed Opt Express. 2019 Nov 25;10(12):6476-6496. doi: 10.1364/BOE.10.006476. eCollection 2019 Dec 1.
Adaptive optics (AO) scanning laser ophthalmoscopy offers a non-invasive approach for observing the retina at a cellular level. Its high resolution capabilities have direct application for monitoring and treating retinal diseases by providing quantitative assessment of cone health and density across time. However, accurate longitudinal analysis of AO images requires that AO images from different sessions be aligned, such that cell-to-cell correspondences can be established between timepoints. Such alignment is currently done manually, a time intensive task that is restrictive for large longitudinal AO studies. Automated longitudinal montaging for AO images remains a challenge because the intensity pattern of imaged cone mosaics can vary significantly, even across short timespans. This limitation prevents existing intensity-based montaging approaches from being accurately applied to longitudinal AO images. In the present work, we address this problem by presenting a constellation-based method for performing longitudinal alignment of AO images. Rather than matching intensity similarities between images, our approach finds structural patterns in the cone mosaics and leverages these to calculate the correct alignment. These structural patterns are robust to intensity variations, allowing us to make accurate longitudinal alignments. We validate our algorithm using 8 longitudinal AO datasets, each with two timepoints separated 6-12 months apart. Our results show that the proposed method can produce longitudinal AO montages with cell-to-cell correspondences across the full extent of the montage. Quantitative assessment of the alignment accuracy shows that the algorithm is able to find longitudinal alignments whose accuracy is on par with manual alignments performed by a trained rater.
自适应光学(AO)扫描激光检眼镜提供了一种在细胞水平观察视网膜的非侵入性方法。其高分辨率能力通过对不同时间点的视锥细胞健康状况和密度进行定量评估,在视网膜疾病的监测和治疗中具有直接应用价值。然而,对AO图像进行准确的纵向分析需要对来自不同检查阶段的AO图像进行对齐,以便能够在不同时间点之间建立细胞与细胞的对应关系。目前这种对齐是手动完成的,这是一项耗时的任务,对于大规模纵向AO研究具有局限性。AO图像的自动纵向拼接仍然是一个挑战,因为即使在短时间跨度内,成像的视锥细胞镶嵌图的强度模式也可能有显著变化。这一限制使得现有的基于强度的拼接方法无法准确应用于纵向AO图像。在本研究中,我们通过提出一种基于星座的方法来解决AO图像的纵向对齐问题。我们的方法不是匹配图像之间的强度相似性,而是在视锥细胞镶嵌图中寻找结构模式,并利用这些模式来计算正确的对齐。这些结构模式对强度变化具有鲁棒性,使我们能够进行准确的纵向对齐。我们使用8个纵向AO数据集验证了我们的算法,每个数据集有两个相隔6 - 12个月的时间点。我们的结果表明,所提出的方法能够生成在拼接图的整个范围内具有细胞与细胞对应关系的纵向AO拼接图。对齐精度的定量评估表明,该算法能够找到精度与训练有素的评分者进行的手动对齐相当的纵向对齐。