Suppr超能文献

使用星座匹配对自适应光学视网膜图像进行自动纵向拼接

Automatic longitudinal montaging of adaptive optics retinal images using constellation matching.

作者信息

Chen Min, Cooper Robert F, Gee James C, Brainard David H, Morgan Jessica I W

机构信息

Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.

Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

Biomed Opt Express. 2019 Nov 25;10(12):6476-6496. doi: 10.1364/BOE.10.006476. eCollection 2019 Dec 1.

Abstract

Adaptive optics (AO) scanning laser ophthalmoscopy offers a non-invasive approach for observing the retina at a cellular level. Its high resolution capabilities have direct application for monitoring and treating retinal diseases by providing quantitative assessment of cone health and density across time. However, accurate longitudinal analysis of AO images requires that AO images from different sessions be aligned, such that cell-to-cell correspondences can be established between timepoints. Such alignment is currently done manually, a time intensive task that is restrictive for large longitudinal AO studies. Automated longitudinal montaging for AO images remains a challenge because the intensity pattern of imaged cone mosaics can vary significantly, even across short timespans. This limitation prevents existing intensity-based montaging approaches from being accurately applied to longitudinal AO images. In the present work, we address this problem by presenting a constellation-based method for performing longitudinal alignment of AO images. Rather than matching intensity similarities between images, our approach finds structural patterns in the cone mosaics and leverages these to calculate the correct alignment. These structural patterns are robust to intensity variations, allowing us to make accurate longitudinal alignments. We validate our algorithm using 8 longitudinal AO datasets, each with two timepoints separated 6-12 months apart. Our results show that the proposed method can produce longitudinal AO montages with cell-to-cell correspondences across the full extent of the montage. Quantitative assessment of the alignment accuracy shows that the algorithm is able to find longitudinal alignments whose accuracy is on par with manual alignments performed by a trained rater.

摘要

自适应光学(AO)扫描激光检眼镜提供了一种在细胞水平观察视网膜的非侵入性方法。其高分辨率能力通过对不同时间点的视锥细胞健康状况和密度进行定量评估,在视网膜疾病的监测和治疗中具有直接应用价值。然而,对AO图像进行准确的纵向分析需要对来自不同检查阶段的AO图像进行对齐,以便能够在不同时间点之间建立细胞与细胞的对应关系。目前这种对齐是手动完成的,这是一项耗时的任务,对于大规模纵向AO研究具有局限性。AO图像的自动纵向拼接仍然是一个挑战,因为即使在短时间跨度内,成像的视锥细胞镶嵌图的强度模式也可能有显著变化。这一限制使得现有的基于强度的拼接方法无法准确应用于纵向AO图像。在本研究中,我们通过提出一种基于星座的方法来解决AO图像的纵向对齐问题。我们的方法不是匹配图像之间的强度相似性,而是在视锥细胞镶嵌图中寻找结构模式,并利用这些模式来计算正确的对齐。这些结构模式对强度变化具有鲁棒性,使我们能够进行准确的纵向对齐。我们使用8个纵向AO数据集验证了我们的算法,每个数据集有两个相隔6 - 12个月的时间点。我们的结果表明,所提出的方法能够生成在拼接图的整个范围内具有细胞与细胞对应关系的纵向AO拼接图。对齐精度的定量评估表明,该算法能够找到精度与训练有素的评分者进行的手动对齐相当的纵向对齐。

相似文献

1
Automatic longitudinal montaging of adaptive optics retinal images using constellation matching.
Biomed Opt Express. 2019 Nov 25;10(12):6476-6496. doi: 10.1364/BOE.10.006476. eCollection 2019 Dec 1.
2
Multi-modal automatic montaging of adaptive optics retinal images.
Biomed Opt Express. 2016 Nov 3;7(12):4899-4918. doi: 10.1364/BOE.7.004899. eCollection 2016 Dec 1.
3
SPATIALLY INFORMED CNN FOR AUTOMATED CONE DETECTION IN ADAPTIVE OPTICS RETINAL IMAGES.
Proc IEEE Int Symp Biomed Imaging. 2020 Apr;2020:1383-1386. doi: 10.1109/isbi45749.2020.9098455. Epub 2020 May 22.
5
Fast adaptive optics scanning light ophthalmoscope retinal montaging.
Biomed Opt Express. 2018 Aug 15;9(9):4317-4328. doi: 10.1364/BOE.9.004317. eCollection 2018 Sep 1.
6
Accurate Correspondence of Cone Photoreceptor Neurons in the Human Eye Using Graph Matching Applied to Longitudinal Adaptive Optics Images.
Med Image Comput Comput Assist Interv. 2017 Sep;10434:153-161. doi: 10.1007/978-3-319-66185-8_18. Epub 2017 Sep 4.
7
Automated identification of cone photoreceptors in adaptive optics optical coherence tomography images using transfer learning.
Biomed Opt Express. 2018 Oct 10;9(11):5353-5367. doi: 10.1364/BOE.9.005353. eCollection 2018 Nov 1.
9
Automated identification of cone photoreceptors in adaptive optics retinal images.
J Opt Soc Am A Opt Image Sci Vis. 2007 May;24(5):1358-63. doi: 10.1364/josaa.24.001358.
10
Interpretation of Flood-Illuminated Adaptive Optics Images in Subjects with Retinitis Pigmentosa.
Adv Exp Med Biol. 2016;854:291-7. doi: 10.1007/978-3-319-17121-0_39.

引用本文的文献

1
Axicons for improved resolution and depth of focus in adaptive optics scanning light ophthalmoscopy.
Biomed Opt Express. 2025 Jul 16;16(8):3172-3193. doi: 10.1364/BOE.564398. eCollection 2025 Aug 1.
2
Longitudinal Imaging of the Parafoveal Cone Mosaic in Congenital Achromatopsia.
Ophthalmol Sci. 2025 Mar 14;5(4):100765. doi: 10.1016/j.xops.2025.100765. eCollection 2025 Jul-Aug.
4
High refresh rate display for natural monocular viewing in AOSLO psychophysics experiments.
Opt Express. 2024 Aug 26;32(18):31142-31161. doi: 10.1364/OE.529199.
5
The effect of sampling window size on topographical maps of foveal cone density.
Front Ophthalmol (Lausanne). 2024 Apr 9;4:1348950. doi: 10.3389/fopht.2024.1348950. eCollection 2024.
6
Intensity-based optoretinography reveals sub-clinical deficits in cone function in retinitis pigmentosa.
Front Ophthalmol (Lausanne). 2024 Jun 4;4:1373549. doi: 10.3389/fopht.2024.1373549. eCollection 2024.
7
Modeling Human Macular Cone Photoreceptor Spatial Distribution.
Invest Ophthalmol Vis Sci. 2024 Jul 1;65(8):14. doi: 10.1167/iovs.65.8.14.
8
Intervisit Reproducibility of Foveal Cone Density Metrics.
Transl Vis Sci Technol. 2024 Jun 3;13(6):18. doi: 10.1167/tvst.13.6.18.
9
Substrip-based registration and automatic montaging of adaptive optics retinal images.
Biomed Opt Express. 2024 Jan 31;15(2):1311-1330. doi: 10.1364/BOE.514447. eCollection 2024 Feb 1.
10
Automatic montaging of adaptive optics SLO retinal images based on graph theory.
Biomed Opt Express. 2024 Jan 25;15(2):1021-1037. doi: 10.1364/BOE.505013. eCollection 2024 Feb 1.

本文引用的文献

1
A 2-Year Longitudinal Study of Normal Cone Photoreceptor Density.
Invest Ophthalmol Vis Sci. 2019 Apr 1;60(5):1420-1430. doi: 10.1167/iovs.18-25904.
2
Fast adaptive optics scanning light ophthalmoscope retinal montaging.
Biomed Opt Express. 2018 Aug 15;9(9):4317-4328. doi: 10.1364/BOE.9.004317. eCollection 2018 Sep 1.
4
The Reliability of Cone Density Measurements in the Presence of Rods.
Transl Vis Sci Technol. 2018 Jun 22;7(3):21. doi: 10.1167/tvst.7.3.21. eCollection 2018 Jun.
6
An Automated Reference Frame Selection (ARFS) Algorithm for Cone Imaging with Adaptive Optics Scanning Light Ophthalmoscopy.
Transl Vis Sci Technol. 2017 Apr 3;6(2):9. doi: 10.1167/tvst.6.2.9. eCollection 2017 Apr.
7
De-warping of images and improved eye tracking for the scanning laser ophthalmoscope.
PLoS One. 2017 Apr 3;12(4):e0174617. doi: 10.1371/journal.pone.0174617. eCollection 2017.
8
REPEATABILITY AND LONGITUDINAL ASSESSMENT OF FOVEAL CONE STRUCTURE IN CNGB3-ASSOCIATED ACHROMATOPSIA.
Retina. 2017 Oct;37(10):1956-1966. doi: 10.1097/IAE.0000000000001434.
9
Multi-modal automatic montaging of adaptive optics retinal images.
Biomed Opt Express. 2016 Nov 3;7(12):4899-4918. doi: 10.1364/BOE.7.004899. eCollection 2016 Dec 1.
10
Understanding the changes of cone reflectance in adaptive optics flood illumination retinal images over three years.
Biomed Opt Express. 2016 Jun 24;7(7):2807-22. doi: 10.1364/BOE.7.002807. eCollection 2016 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验