Suppr超能文献

一种用于自适应光学扫描激光检眼镜圆锥成像的自动参考系选择(ARFS)算法。

An Automated Reference Frame Selection (ARFS) Algorithm for Cone Imaging with Adaptive Optics Scanning Light Ophthalmoscopy.

作者信息

Salmon Alexander E, Cooper Robert F, Langlo Christopher S, Baghaie Ahmadreza, Dubra Alfredo, Carroll Joseph

机构信息

Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.

Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA ; Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Transl Vis Sci Technol. 2017 Apr 3;6(2):9. doi: 10.1167/tvst.6.2.9. eCollection 2017 Apr.

Abstract

PURPOSE

To develop an automated reference frame selection (ARFS) algorithm to replace the subjective approach of manually selecting reference frames for processing adaptive optics scanning light ophthalmoscope (AOSLO) videos of cone photoreceptors.

METHODS

Relative distortion was measured within individual frames before conducting image-based motion tracking and sorting of frames into distinct spatial clusters. AOSLO images from nine healthy subjects were processed using ARFS and human-derived reference frames, then aligned to undistorted AO-flood images by nonlinear registration and the registration transformations were compared. The frequency at which humans selected reference frames that were rejected by ARFS was calculated in 35 datasets from healthy subjects, and subjects with achromatopsia, albinism, or retinitis pigmentosa. The level of distortion in this set of human-derived reference frames was assessed.

RESULTS

The average transformation vector magnitude required for registration of AOSLO images to AO-flood images was significantly reduced from 3.33 ± 1.61 pixels when using manual reference frame selection to 2.75 ± 1.60 pixels (mean ± SD) when using ARFS ( = 0.0016). Between 5.16% and 39.22% of human-derived frames were rejected by ARFS. Only 2.71% to 7.73% of human-derived frames were ranked in the top 5% of least distorted frames.

CONCLUSION

ARFS outperforms expert observers in selecting minimally distorted reference frames in AOSLO image sequences. The low success rate in human frame choice illustrates the difficulty in subjectively assessing image distortion.

TRANSLATIONAL RELEVANCE

Manual reference frame selection represented a significant barrier to a fully automated image-processing pipeline (including montaging, cone identification, and metric extraction). The approach presented here will aid in the clinical translation of AOSLO imaging.

摘要

目的

开发一种自动参考帧选择(ARFS)算法,以取代在处理锥体细胞光感受器的自适应光学扫描激光检眼镜(AOSLO)视频时手动选择参考帧的主观方法。

方法

在进行基于图像的运动跟踪并将帧分类到不同的空间簇之前,测量各个帧内的相对失真。使用ARFS和人工选择的参考帧处理来自9名健康受试者的AOSLO图像,然后通过非线性配准将其与无失真的AO泛光图像对齐,并比较配准变换。计算了来自健康受试者、色盲症患者、白化病患者或视网膜色素变性患者的35个数据集中,人工选择的被ARFS拒绝的参考帧的频率。评估了这组人工选择的参考帧中的失真水平。

结果

将AOSLO图像与AO泛光图像配准所需的平均变换向量大小,从使用手动参考帧选择时的3.33±1.61像素显著降低到使用ARFS时的2.75±1.60像素(平均值±标准差)(P = 0.0016)。ARFS拒绝了5.16%至39.22%的人工选择的帧。只有2.71%至7.73%的人工选择的帧在失真最小的前5%的帧中。

结论

在选择AOSLO图像序列中失真最小的参考帧方面,ARFS优于专家观察者。人工选择帧的成功率较低,说明了主观评估图像失真的难度。

转化相关性

手动参考帧选择是全自动图像处理流程(包括拼接、锥体细胞识别和度量提取)的一个重大障碍。这里介绍的方法将有助于AOSLO成像的临床转化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bc5/5381332/1270f5d1a49a/i2164-2591-6-2-9-f01.jpg

相似文献

1
An Automated Reference Frame Selection (ARFS) Algorithm for Cone Imaging with Adaptive Optics Scanning Light Ophthalmoscopy.
Transl Vis Sci Technol. 2017 Apr 3;6(2):9. doi: 10.1167/tvst.6.2.9. eCollection 2017 Apr.
2
Effects of Intraframe Distortion on Measures of Cone Mosaic Geometry from Adaptive Optics Scanning Light Ophthalmoscopy.
Transl Vis Sci Technol. 2016 Feb 22;5(1):10. doi: 10.1167/tvst.5.1.10. eCollection 2016 Feb.
3
Substrip-based registration and automatic montaging of adaptive optics retinal images.
Biomed Opt Express. 2024 Jan 31;15(2):1311-1330. doi: 10.1364/BOE.514447. eCollection 2024 Feb 1.
5
Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images.
Biomed Opt Express. 2016 Apr 27;7(5):2036-50. doi: 10.1364/BOE.7.002036. eCollection 2016 May 1.
6
Optical Coherence Tomography Artifacts Are Associated With Adaptive Optics Scanning Light Ophthalmoscopy Success in Achromatopsia.
Transl Vis Sci Technol. 2021 Jan 7;10(1):11. doi: 10.1167/tvst.10.1.11. eCollection 2021 Jan.
8
Unsupervised identification of cone photoreceptors in non-confocal adaptive optics scanning light ophthalmoscope images.
Biomed Opt Express. 2017 May 26;8(6):3081-3094. doi: 10.1364/BOE.8.003081. eCollection 2017 Jun 1.
9
Deep learning based detection of cone photoreceptors with multimodal adaptive optics scanning light ophthalmoscope images of achromatopsia.
Biomed Opt Express. 2018 Jul 18;9(8):3740-3756. doi: 10.1364/BOE.9.003740. eCollection 2018 Aug 1.

引用本文的文献

1
structured illumination ophthalmoscopy demonstration on the human retina using adaptive optics.
Biomed Opt Express. 2025 Jun 24;16(7):2923-2944. doi: 10.1364/BOE.559670. eCollection 2025 Jul 1.
2
Longitudinal Imaging of the Parafoveal Cone Mosaic in Congenital Achromatopsia.
Ophthalmol Sci. 2025 Mar 14;5(4):100765. doi: 10.1016/j.xops.2025.100765. eCollection 2025 Jul-Aug.
3
Noninvasive Assessment of Ocular Structure in the Elderly 13-Lined Ground Squirrel.
Adv Exp Med Biol. 2025;1468:157-162. doi: 10.1007/978-3-031-76550-6_26.
5
Improved tracking of corneal immune cell dynamics using confocal microscopy.
Biomed Opt Express. 2024 Oct 10;15(11):6277-6298. doi: 10.1364/BOE.536553. eCollection 2024 Nov 1.
6
Seasonal Variation in ATP-Induced Retinal Damage in the Cone-Dominant 13-Lined Ground Squirrel.
Transl Vis Sci Technol. 2024 Nov 4;13(11):5. doi: 10.1167/tvst.13.11.5.
7
Minimum intensity projection of embossed quadrant-detection images for improved photoreceptor mosaic visualisation.
Front Ophthalmol (Lausanne). 2024 Mar 13;4:1349297. doi: 10.3389/fopht.2024.1349297. eCollection 2024.
8
The effect of sampling window size on topographical maps of foveal cone density.
Front Ophthalmol (Lausanne). 2024 Apr 9;4:1348950. doi: 10.3389/fopht.2024.1348950. eCollection 2024.
9
Quantifying image quality in AOSLO images of photoreceptors.
Biomed Opt Express. 2024 Apr 4;15(5):2849-2862. doi: 10.1364/BOE.516477. eCollection 2024 May 1.
10
Chemically induced cone degeneration in the 13-lined ground squirrel.
Vis Neurosci. 2024 May 10;41:E002. doi: 10.1017/S0952523824000014.

本文引用的文献

1
Imaging individual neurons in the retinal ganglion cell layer of the living eye.
Proc Natl Acad Sci U S A. 2017 Jan 17;114(3):586-591. doi: 10.1073/pnas.1613445114. Epub 2017 Jan 3.
2
Multi-modal automatic montaging of adaptive optics retinal images.
Biomed Opt Express. 2016 Nov 3;7(12):4899-4918. doi: 10.1364/BOE.7.004899. eCollection 2016 Dec 1.
4
Residual Foveal Cone Structure in CNGB3-Associated Achromatopsia.
Invest Ophthalmol Vis Sci. 2016 Aug 1;57(10):3984-95. doi: 10.1167/iovs.16-19313.
5
A Review of Adaptive Optics Optical Coherence Tomography: Technical Advances, Scientific Applications, and the Future.
Invest Ophthalmol Vis Sci. 2016 Jul 1;57(9):OCT51-68. doi: 10.1167/iovs.16-19103.
6
Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images.
Biomed Opt Express. 2016 Apr 27;7(5):2036-50. doi: 10.1364/BOE.7.002036. eCollection 2016 May 1.
7
Registration of retinal sequences from new video-ophthalmoscopic camera.
Biomed Eng Online. 2016 May 20;15(1):57. doi: 10.1186/s12938-016-0191-0.
8
Correlating Photoreceptor Mosaic Structure to Clinical Findings in Stargardt Disease.
Transl Vis Sci Technol. 2016 Mar 11;5(2):6. doi: 10.1167/tvst.5.2.6. eCollection 2016 Mar.
9
Effects of Intraframe Distortion on Measures of Cone Mosaic Geometry from Adaptive Optics Scanning Light Ophthalmoscopy.
Transl Vis Sci Technol. 2016 Feb 22;5(1):10. doi: 10.1167/tvst.5.1.10. eCollection 2016 Feb.
10
Noninvasive imaging of the thirteen-lined ground squirrel photoreceptor mosaic.
Vis Neurosci. 2016;33:e003. doi: 10.1017/S0952523815000346.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验