Suppr超能文献

用于自适应光学视网膜图像中自动视锥细胞检测的空间信息卷积神经网络

SPATIALLY INFORMED CNN FOR AUTOMATED CONE DETECTION IN ADAPTIVE OPTICS RETINAL IMAGES.

作者信息

Jin Heng, Morgan Jessica I W, Gee James C, Chen Min

机构信息

School of Automation Science and Electrical Engineering, Beihang University, China.

Department of Radiology, University of Pennsylvania, USA.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2020 Apr;2020:1383-1386. doi: 10.1109/isbi45749.2020.9098455. Epub 2020 May 22.

Abstract

Adaptive optics (AO) scanning laser ophthalmoscopy offers cellular level in-vivo imaging of the human cone mosaic. Existing analysis of cone photoreceptor density in AO images require accurate identification of cone cells, which is a time and labor-intensive task. Recently, several methods have been introduced for automated cone detection in AO retinal images using convolutional neural networks (CNN). However, these approaches have been limited in their ability to correctly identify cones when applied to AO images originating from different locations in the retina, due to changes to the reflectance and arrangement of the cone mosaics with eccentricity. To address these limitations, we present an adapted CNN architecture that incorporates spatial information directly into the network. Our approach, inspired by conditional generative adversarial networks, embeds the retina location from which each AO image was acquired as part of the training. Using manual cone identification as ground truth, our evaluation shows general improvement over existing approaches when detecting cones in the middle and periphery regions of the retina, but decreased performance near the fovea.

摘要

自适应光学(AO)扫描激光检眼镜可提供人视锥细胞镶嵌的细胞水平体内成像。对AO图像中视锥光感受器密度的现有分析需要准确识别视锥细胞,这是一项耗时且费力的任务。最近,已经引入了几种使用卷积神经网络(CNN)在AO视网膜图像中自动检测视锥细胞的方法。然而,由于视锥细胞镶嵌的反射率和排列随偏心率而变化,这些方法在应用于源自视网膜不同位置的AO图像时,正确识别视锥细胞的能力有限。为了解决这些限制,我们提出了一种经过改进的CNN架构,该架构将空间信息直接纳入网络。我们的方法受条件生成对抗网络的启发,将获取每个AO图像的视网膜位置作为训练的一部分进行嵌入。以手动视锥细胞识别作为基准事实,我们的评估表明,在检测视网膜中部和周边区域的视锥细胞时,与现有方法相比有总体改进,但在中央凹附近性能下降。

相似文献

1
SPATIALLY INFORMED CNN FOR AUTOMATED CONE DETECTION IN ADAPTIVE OPTICS RETINAL IMAGES.
Proc IEEE Int Symp Biomed Imaging. 2020 Apr;2020:1383-1386. doi: 10.1109/isbi45749.2020.9098455. Epub 2020 May 22.
2
Cone photoreceptor definition on adaptive optics retinal imaging.
Br J Ophthalmol. 2014 Aug;98(8):1073-9. doi: 10.1136/bjophthalmol-2013-304615. Epub 2014 Apr 11.
3
Cone Identification in Choroideremia: Repeatability, Reliability, and Automation Through Use of a Convolutional Neural Network.
Transl Vis Sci Technol. 2020 Jul 16;9(2):40. doi: 10.1167/tvst.9.2.40. eCollection 2020 Jul.
4
Automated identification of cone photoreceptors in adaptive optics optical coherence tomography images using transfer learning.
Biomed Opt Express. 2018 Oct 10;9(11):5353-5367. doi: 10.1364/BOE.9.005353. eCollection 2018 Nov 1.
7
Cone abnormalities in fundus albipunctatus associated with RDH5 mutations assessed using adaptive optics scanning laser ophthalmoscopy.
Am J Ophthalmol. 2014 Mar;157(3):558-70.e1-4. doi: 10.1016/j.ajo.2013.10.021. Epub 2013 Nov 16.
8
High-resolution retinal imaging of cone-rod dystrophy.
Ophthalmology. 2006 Jun;113(6):1019.e1. doi: 10.1016/j.ophtha.2006.01.056. Epub 2006 May 2.
9
High-resolution imaging of resolved central serous chorioretinopathy using adaptive optics scanning laser ophthalmoscopy.
Ophthalmology. 2010 Sep;117(9):1800-9, 1809.e1-2. doi: 10.1016/j.ophtha.2010.01.042. Epub 2010 Jul 29.

引用本文的文献

本文引用的文献

2
A 2-Year Longitudinal Study of Normal Cone Photoreceptor Density.
Invest Ophthalmol Vis Sci. 2019 Apr 1;60(5):1420-1430. doi: 10.1167/iovs.18-25904.
3
Deep learning based detection of cone photoreceptors with multimodal adaptive optics scanning light ophthalmoscope images of achromatopsia.
Biomed Opt Express. 2018 Jul 18;9(8):3740-3756. doi: 10.1364/BOE.9.003740. eCollection 2018 Aug 1.
4
The Reliability of Cone Density Measurements in the Presence of Rods.
Transl Vis Sci Technol. 2018 Jun 22;7(3):21. doi: 10.1167/tvst.7.3.21. eCollection 2018 Jun.
6
In vivo imaging of human cone photoreceptor inner segments.
Invest Ophthalmol Vis Sci. 2014 Jun 6;55(7):4244-51. doi: 10.1167/iovs.14-14542.
7
Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope.
Biomed Opt Express. 2011 Jul 1;2(7):1864-76. doi: 10.1364/BOE.2.001864. Epub 2011 Jun 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验